Showing posts with label aviation. Show all posts
Showing posts with label aviation. Show all posts

Friday, 30 September 2022

Aperiodic Aero-foil Kinematics

     This post is about a 2D NACA 0012 aero-foil undergoing forced aperiodic heavingHeaving motion is achieved by the plot shown in Fig. 1. Plot within Fig. 1 represents position of airfoil at various time steps.


Fig. 1, The position of aero-foil

     The animation of the vorticity contours are shown in Fig. 2. The velocity, pressure and vorticity for aperiodic heaving is shown in Fig. 3. A comparison will be made with heaving later, if ever ðŸ˜€. As far as aerodynamic forces are concerned, per-cycle Cl, avg is at 0.63 as compared to 0.0 for periodic heaving. Cd, avg aperiodic heaving is at 0.162 as compared to 0.085 for periodic heaving. Of course, this is done on a coarse mesh. If ever I write a paper about this... ðŸ˜€

Fig. 2, Top Row, Aperiodic, periodic heaving airfoil 

     
Fig. 3, Top Row, L-R, Vorticity, pressure. Bottom Row, Velocity 

     If you want to collaborate on the research projects related to turbomachinery, aerodynamics, renewable energy, please reach out. Thank you very much for reading. 

Monday, 14 December 2020

Flapping Aerofoil For Propulsion

     This post is about a 2D NACA 0012 aerofoil undergoing forced flapping motion for propulsion purposes. Heaving motion is achieved by applying a vertical velocity on the aerofoil based on the Eqn. 1. Similarly the pitching motion is achieved by applying a rotational velocity, governed by Eqn. 2.


vy = 2*Ï€*fh*Ho*sin(2*Ï€*fh*t)                                              Eqn. 1

ω = -2*Ï€*fh*Ï‘*sin[(2*Ï€*fh*t) + 1.5708]                               Eqn. 2

     w.r.t. Eqn. 1-2 reduced frequency is defined as (2*Ï€*fh*Ho/U∞)), fh is the frequency of oscillations, while Ï‰t and Ï‘o represent rotational velocity, instantaneous time and maximum pitching angle. Ho is the heaving amplitude and U∞ is the free stream velocity.

     The flapping motion is achieved by a combination of the heaving and pitching. In this particular simulation, the aerofoil is in the propulsion mode, meaning the feathering parameter χ is less in magnitude than 1.0. Feathering parameter is defined by Eqn. 3.

χ = Ï‘/arctan(h0*2*Ï€*fh/U∞)                                  Eqn. 3

     The boundary conditions employed for the simulation are at Re 1,000, K = 1.41, Ho = aerofoil chord lengthχ = 0.5489 and fh = 0.003391 Hz. The animation of the pressure, vorticity and velocity contours is shown in Fig. 1.


Fig. 1, Flow animation, fluid flow direction is from left to right.

     The results of present simulation are compared with [1]. In terms of maximum lift, a maximum deviation of 5% is observed as compared to [1], as shown in Fig. 2. The maximum lift coefficient for available data is ~4.224 while the maximum lift coefficient from the present simulation is ~4.057. The average thrust produced is within 2% of [1]. Average thrust coefficient per cycle from [1] is 0.9957 while the result from present simulation reveals the thrust coefficient to be 1.0098.


Fig. 2, A comparison of coefficient of lift.

If you want to collaborate on the research projects related to turbo-machinery, aerodynamics, renewable energy, please reach out. Thank you very much for reading.

References

[1] https://doi.org/10.1017/jfm.2017.508

Monday, 13 April 2020

Formation Flight Computational Fluid Dynamics

     This is a post about computational fluid dynamics analysis of formation flight.

     The results from an analysis of three unmanned combat aerial vehicles (UCAVs) flying in a V-type formation are presented. The chosen UCAV configuration, shown in Figs. 1-2 and available for download here, is named SACCON (Stability And Control Configuration) UCAV. This configuration is used because of the availability of the geometric and aerodynamic data, used in the validation and verification of the numerical analysis. The SACCON UCAV is designed by NATO's (North Atlantic Treaty Organization) RTO (Research and Technology Group) under Applied Vehicle Task Group (AVT-161) to assess the performance of military aircrafts.


Fig. 1, SACCON UCAV


Fig. 2, Technical drawing for the SACCON UCAV

     The simulation is performed using commercially available computational fluid dynamics code.  The details about the solver and the discretization schemes are presented next. The simulation is performed using SIMPLE-R solver for pressure-velocity coupling. The diffusive terms of the Navier-Stokes equations are discretized using central differentiating scheme while the convective terms are discretized using the upwind scheme of second order. The κ-ε turbulence model with damping functions is implemented to model turbulence. The simulation predicts three-dimensional steady–state flow over UCAVs.

     The Reynolds and Mach number of flow are set at 1e6 and 0.15, respectively. The two trailing UCAVs are placed 3 wingspans behind the leading UCAV. The trailing UCAVs are a wingspan apart. The V-type configuration is chosen because it is the most common observation in birds (author's observation). The V-type formation is shown in Fig. 3. All three UCAVs are at 5° angle-of-attack.


Fig. 3, The V-type formation (top view)

     The boundaries of the computational domain are located at a distance equivalent to 10 times the distance between the nose of the leading UCAV and the tail of the trailing UCAV. The mesh is made of 821,315 cells. Mesh controls are used to refine the mesh in the areas of interest i.e. on the surfaces of the UCAVs and in the wake of all three UCAVs. A cartesian mesh with immersed boundary method is used for the present study. The computational domain with mesh is shown in Fig. 4 while a closeup of the mesh is shown in Fig. 5.


Fig. 4, The computational domain and mesh


Fig. 5, Closeup of mesh, notice the refined wakes of the UCAVs

     For validation and verification, the lift and drag forces from the present study are compared with studies [1-2]. The results are in close agreement with [1,2] As a result of flying in a formation, an improvement in the lift-to-drag ratio of 10.05% is noted. The lift-to-drag ratio of the trailing UCAVs is at 11.825 in comparison with a lift-to-drag ratio of a single UCAV, i.e. 10.745. The lift coefficient is increased by 7.43% while the drag coefficient decreased by 2.174%. The reason(s) to why the efficiency increases will be looked upon later, if ever the author has the time and will power .

     The results from post processing of the simulations are presented in Figs. 6-7. The pressure iso-surfaces colored by velocity magnitude are shown in Fig. 6. While the velocity iso-surfaces colored by pressure magnitude are shown in Fig. 7.


Fig. 6, Flight direction towards the reader


Fig. 7, Flight direction away from the reader

     Thank you very much for reading. If you would like to collaborate on research projects, please reach out.

[1] https://doi.org/10.2514/1.C031386
[2] https://doi.org/10.1155/2017/4217217

Sunday, 7 October 2018

High Camber Wing CFD Simulation

     This post is about the numerical simulation of a high camber, large aspect ratio wing. The wing had an aspect ratio of 5:1. The Reynolds number of flow was 500,000. The wing was at an angle of attack of zero degree. The aero-foil employed had a cross section of NACA 9410.

     The software employed was Flow Simulation Premium. A Cartesian mesh was created using the immersed boundary method. The mesh had 581,005 cells. Among those 581,005 cells, 55,882 were at the solid-fluid boundary. A time step of ~0.00528167 s was employed*. The domain was large enough to accurately trace the flow around the wing without any numerical or reversed flow errors. The software employs κ-ε turbulence model with damping functions, SIMPLE-R (modified) as the numerical algorithm and second order upwind and central approximations as the spatial discretization schemes for the convective fluxes and diffusive terms. The time derivatives are approximated with an implicit first-order Euler scheme.

     The mesh is shown in Fig. 1. The four layers of different mesh density are also visible in Fig. 1, the mesh is refined near the wing surface using a mesh control. The velocity around the wing section is shown in Fig. 2, using a cut plot at  the center of the wing. In Fig. 2, the wing body is super imposed by pressure plot. The velocity vectors showing the direction of flow are superimposed on both the wing body and the velocity cut plot.


Fig. 1, The computational domain.


Fig. 2, The velocity and pressure plots.

     The results of the simulation was validated against the results from XFLR5 software. XFLR5 predicted slightly higher lift and slightly less drag on the wing for same boundary conditions because the XFLR5 simulations were inviscid.

     Thank you for reading. If you would like to contribute to the research, both financially and scientifically, please feel free to reach out.

     *Time step is averaged because of the fact that a smaller time step was employed at the start of the numerical simulation.

Monday, 10 September 2018

Computational Fluid Dynamics Analysis of a Symmetrical Wing, Update 01

     This post is about the computational fluid dynamics analysis of a wing. The wing analyzed employed the NACA 0021 section throughout. The wing had a span of 4 m and a chord length of 1 m. The Reynolds number was kept at 3,000,000. The software employed was SolidWorks Flow Simulation Premium.

     The mesh had a total of 385,064 cells of which 84,826 cells were in contact with the wing surface, as shown in Fig. 1. The results are, indeed, mesh independent. Mesh controls were employed to refine the mesh near the wing surface. The computational domain employed was of cylindrical shape.

 
Fig. 1, The computational mesh around the wing.
 
     The velocity variation at various angles of attack around the wing cross-section is shown in Fig. 3 while the pressure variation on the wing surface is shown in Fig. 4. The results were validated against experiments conducted by [1].

 
Fig. 2, Velocity variation around the wing at 0-25 degree AOA, 5 degree increments.

 
Fig. 3, Pressure variation at the wing surface at 0-25 degree AOA, 5 degree increments.

     The purpose of this blog is maintain my online portfolio. I did this analysis because I realized I haven't written anything of this nature before. All of my previous simulations and/or blog entries were from the propulsion, renewable energy and turbo-machinery areas.
 

     Update 01

     CAD files are available here.
 
    
     Thank you for reading. If you would like to collaborate on research projects, please feel free to contact.

     [1] Fernando A. Rocha, Adson A. de Paula, Marcos d. Sousa, André V. Cavalieri, and Vitor G. Kleine, "Lift enhancement by wavy leading edges at Reynolds numbers between 700,000 and 3,000,000," Proceedings of the 2018 Applied Aerodynamics Conference, AIAA AVIATION Forum, Atlanta, GA, 2018.

Sunday, 5 July 2015

Canal Turbine Concept


It's a concept I am currently working on, so far I gave made a CAD model (renderings attached) of it in SolidWorks and analyzed it using its built in CFD module.

There are many advantages of canal turbines over wind turbines, prominent one's being:

 

Unidirectional flow


Water flows in one direction in a canal so we don't need pitch and yaw control surfaces. That simplifies the design process and reduces weight.

Constant flow rate


We (humans) control water flow rate through canals and it's almost same all year, so we don't have to worry about blade aero foil design to suit variable/abruptly variable flow rate, that makes design process further straight forward.

Large Electricity potential


Canals are 100s of km long, imagine the electricity potential in the canals. You can put these turbines in irrigation canals and it'll power nearby villages and all the irrigation equipment etc.

Higher Power/Discharge Ratio


Water is ~816 times dense (powerful) than air, so for the same discharge (flow) rate we get potentially 816 times more power. Which means more we can make designs that are lighter, smaller and easier to manage and maintain.

Easy maintenance


Fitted less than ~1 m deep inside the canal and can be retracted for maintenance at ground level, making maintenance very easy or better yet, we can maintain them while canals are being cleaned.


Sunday, 15 September 2013

SolidWorks Rotor Blade RC

 Rotor Blade RC

 
This is another of my CAD models for sale, it is a profile of the main rotor blade of RC helicopters.
 

Pricing

SolidWorks 2011 Part File              $25 (PKR 2,500)
SolidWorks 2013 Part File              $20 (PKR 2,000)
IGES/STEP File                             $50 (PKR 5,000)
STL File                                        $10 (PKR 1,000)
DWG File AutoCAD 2007                $15 (PKR 1,500)
DWG File AutoCAD 2013                $10 (PKR 1,000)
 

Renderings

With White Back Ground, 1366 x 626, 64 Ray Bounces, Maximum Shadow Quality, Ground Illumination, Global Illumination, Self Shadows, Ground Shadows and Ground Reflections.
 
$2.5 (PKR 250) Each (167 PPI at 9 in Diagonal) with at least 1 part file.
$10 (PKR 1,000) Each (167 PPI at 9 in Diagonal) only renders.
 
Custom Back Ground add $5 per render.

Special discount for students enrolled in degree programs!
 
Render 01

Render 02

Render 03

Render 04