This is a post about computational fluid dynamics analysis of formation flight.
The results from an analysis of three unmanned combat aerial vehicles (UCAVs) flying in a V-type formation are presented. The chosen UCAV configuration, shown in Figs. 1-2 and available for download here, is named SACCON (Stability And Control Configuration) UCAV. This configuration is used because of the availability of the geometric and aerodynamic data, used in the validation and verification of the numerical analysis. The SACCON UCAV is designed by NATO's (North Atlantic Treaty Organization) RTO (Research and Technology Group) under Applied Vehicle Task Group (AVT-161) to assess the performance of military aircrafts.
Fig. 1, SACCON UCAV
Fig. 2, Technical drawing for the SACCON UCAV
The simulation is performed using commercially available computational fluid dynamics code. The details about the solver and the discretization schemes are presented next. The simulation is performed using SIMPLE-R solver for pressure-velocity coupling. The diffusive terms of the Navier-Stokes equations are discretized using central differentiating scheme while the convective terms are discretized using the upwind scheme of second order. The κ-ε turbulence model with damping functions is implemented to model turbulence. The simulation predicts three-dimensional steady–state flow over UCAVs.
The Reynolds and Mach number of flow are set at 1e6 and 0.15, respectively. The two trailing UCAVs are placed 3 wingspans behind the leading UCAV. The trailing UCAVs are a wingspan apart. The V-type configuration is chosen because it is the most common observation in birds (author's observation). The V-type formation is shown in Fig. 3. All three UCAVs are at 5° angle-of-attack.
Fig. 3, The V-type formation (top view)
The boundaries of the computational domain are located at a distance equivalent to 10 times the distance between the nose of the leading UCAV and the tail of the trailing UCAV. The mesh is made of 821,315 cells. Mesh controls are used to refine the mesh in the areas of interest i.e. on the surfaces of the UCAVs and in the wake of all three UCAVs. A cartesian mesh with immersed boundary method is used for the present study. The computational domain with mesh is shown in Fig. 4 while a closeup of the mesh is shown in Fig. 5.
For validation and verification, the lift and drag forces from the present study are compared with studies [1-2]. The results are in close agreement with [1,2] As a result of flying in a formation, an improvement in the lift-to-drag ratio of 10.05% is noted. The lift-to-drag ratio of the trailing UCAVs is at 11.825 in comparison with a lift-to-drag ratio of a single UCAV, i.e. 10.745. The lift coefficient is increased by 7.43% while the drag coefficient decreased by 2.174%. The reason(s) to why the efficiency increases will be looked upon later, if ever the author has the time and will power ☺.
The results from post processing of the simulations are presented in Figs. 6-7. The pressure iso-surfaces colored by velocity magnitude are shown in Fig. 6. While the velocity iso-surfaces colored by pressure magnitude are shown in Fig. 7.
Fig. 4, The computational domain and mesh
Fig. 5, Closeup of mesh, notice the refined wakes of the UCAVs
For validation and verification, the lift and drag forces from the present study are compared with studies [1-2]. The results are in close agreement with [1,2] As a result of flying in a formation, an improvement in the lift-to-drag ratio of 10.05% is noted. The lift-to-drag ratio of the trailing UCAVs is at 11.825 in comparison with a lift-to-drag ratio of a single UCAV, i.e. 10.745. The lift coefficient is increased by 7.43% while the drag coefficient decreased by 2.174%. The reason(s) to why the efficiency increases will be looked upon later, if ever the author has the time and will power ☺.
The results from post processing of the simulations are presented in Figs. 6-7. The pressure iso-surfaces colored by velocity magnitude are shown in Fig. 6. While the velocity iso-surfaces colored by pressure magnitude are shown in Fig. 7.
Fig. 6, Flight direction towards the reader
Fig. 7, Flight direction away from the reader
Thank you very much for reading. If you would like to collaborate on research projects, please reach out.
[1] https://doi.org/10.2514/1.C031386
[2] https://doi.org/10.1155/2017/4217217