Showing posts with label Flapping. Show all posts
Showing posts with label Flapping. Show all posts

Monday, 14 August 2023

Heaving Flat Plate Computational Fluid Dynamics (CFD) Simulation (In-House CFD Code)

     The adventure 🏕 🚵 I started a while ago to make my own CFD 🌬 code / software 💻 for my digital CV and to make a shiny new turbulence mode (one-day perhaps) is going along nicely. This post is about a 2D 10% flat plate undergoing forced heaving motion. Heaving motion is achieved by Eqn. 1.


hy = Ho*sin(2*π*fh*t)                                              Eqn. 1

     w.r.t. Eqn. 1 reduced frequency is defined as (fh*Ho/U∞)), fh is the frequency of oscillations, while t is the instantaneous time. Ho is the heaving amplitude and U∞ is the free stream velocity. hy is the position of the flat plate. The animation is shown in Fig. 1.

     The Strouhal number is 0.228 and Reynolds number is at 500. As we can see, the in-house CFD code works very well for this complex CFD simulation. Validation of this work will never be completed 😆. As soon, I will move on to the next project without completing this one. Anyway, discretized Navier-Stokes equations are available here, in both C++ and MATLAB formats if you want to validate this non sense yourself! Good Luck!

The animation from in-house CFD simulation

     If you want to hire me as your PhD student in the research projects related to turbo-machinery, aerodynamics, renewable energy, please reach out. Thank you very much for reading.

Friday, 30 September 2022

Aperiodic Aero-foil Kinematics

     This post is about a 2D NACA 0012 aero-foil undergoing forced aperiodic heavingHeaving motion is achieved by the plot shown in Fig. 1. Plot within Fig. 1 represents position of airfoil at various time steps.


Fig. 1, The position of aero-foil

     The animation of the vorticity contours are shown in Fig. 2. The velocity, pressure and vorticity for aperiodic heaving is shown in Fig. 3. A comparison will be made with heaving later, if ever 😀. As far as aerodynamic forces are concerned, per-cycle Cl, avg is at 0.63 as compared to 0.0 for periodic heaving. Cd, avg aperiodic heaving is at 0.162 as compared to 0.085 for periodic heaving. Of course, this is done on a coarse mesh. If ever I write a paper about this... 😀

Fig. 2, Top Row, Aperiodic, periodic heaving airfoil 

     
Fig. 3, Top Row, L-R, Vorticity, pressure. Bottom Row, Velocity 

     If you want to collaborate on the research projects related to turbomachinery, aerodynamics, renewable energy, please reach out. Thank you very much for reading. 

Monday, 14 December 2020

Flapping Aerofoil For Propulsion

     This post is about a 2D NACA 0012 aerofoil undergoing forced flapping motion for propulsion purposes. Heaving motion is achieved by applying a vertical velocity on the aerofoil based on the Eqn. 1. Similarly the pitching motion is achieved by applying a rotational velocity, governed by Eqn. 2.


vy = 2*π*fh*Ho*sin(2*π*fh*t)                                              Eqn. 1

ω = -2*π*fh*ϑ*sin[(2*π*fh*t) + 1.5708]                               Eqn. 2

     w.r.t. Eqn. 1-2 reduced frequency is defined as (2*π*fh*Ho/U∞)), fh is the frequency of oscillations, while ωt and ϑo represent rotational velocity, instantaneous time and maximum pitching angle. Ho is the heaving amplitude and U∞ is the free stream velocity.

     The flapping motion is achieved by a combination of the heaving and pitching. In this particular simulation, the aerofoil is in the propulsion mode, meaning the feathering parameter χ is less in magnitude than 1.0. Feathering parameter is defined by Eqn. 3.

χ = ϑ/arctan(h0*2*π*fh/U∞)                                  Eqn. 3

     The boundary conditions employed for the simulation are at Re 1,000, K = 1.41, Ho = aerofoil chord lengthχ = 0.5489 and fh = 0.003391 Hz. The animation of the pressure, vorticity and velocity contours is shown in Fig. 1.


Fig. 1, Flow animation, fluid flow direction is from left to right.

     The results of present simulation are compared with [1]. In terms of maximum lift, a maximum deviation of 5% is observed as compared to [1], as shown in Fig. 2. The maximum lift coefficient for available data is ~4.224 while the maximum lift coefficient from the present simulation is ~4.057. The average thrust produced is within 2% of [1]. Average thrust coefficient per cycle from [1] is 0.9957 while the result from present simulation reveals the thrust coefficient to be 1.0098.


Fig. 2, A comparison of coefficient of lift.

If you want to collaborate on the research projects related to turbo-machinery, aerodynamics, renewable energy, please reach out. Thank you very much for reading.

References

[1] https://doi.org/10.1017/jfm.2017.508