Showing posts with label Pakistan. Show all posts
Showing posts with label Pakistan. Show all posts

Monday, 9 July 2018

Desktop Computer Part List (Summer 2018-Pakistan Market)

     At the time of writing, 1 USD = Rs. 121.936. The prices mentioned in this post are based on the local market prices of computer components in Pakistan. Please remember that, prices vary from city-to-city within the country and shop-to-shop within a city. This is the reason why a price range is mentioned.

CPUs

     Intel Core i7-8700 for Rs. 41,500-Rs. 43,500. Top of the line processor from Intel. Always prefer a Core i7 or a Core i9 processor.

     Intel Core i5-8400 Processor Rs. 26,000-Rs. 28,000. Only buy this processor if there is a budget constraint.

Motherboard

     Gigabyte Z370 AORUS Gaming 3 for Rs. 21,200-Rs. 21,500. This motherboard has many USB ports and also comes equipped with a USB type-C port and M.2 slots etc. for future proofing.

Storage

     WD Blue 500GB Solid State Drive - WDS500G1B0A for Rs. 16,500-Rs. 17,500. Please do not buy a hard drive with rotating mechanism, it's 2018! When later in the year the SSD's prices go down, probably around November-December 2018, then buy another ~500 GB SSD. Do not waste money on a legacy hard drive.

Memory

     Corsair Vengeance LPX 16GB (1x16GB) DDR4 DRAM 3000MHz Rs. 25,800-Rs. 32,000. Please do not buy two sticks of 8 GB each. Save the remaining memory slots for future upgrading. Memory prices will fall significantly in October-November 2018 once the Chinese memory plants become operational. Don't fall for the shop keepers trickery. A common ploy employed by shopkeepers is that 1x16GB memory modules don't work in single channel mode for the 2400 MHz+ modules. It works perfectly well.

Casing

     Corsair Carbide Series® 100R Mid-Tower Case Rs.6,650-Rs. 7,500. This is the best option, really. Don't waste money on casing, it's just a box.

Power Supply

     Corsair VS550 - 550 Watt Power Supply Rs.5,800 -Rs. 6,000. A 550 Watt power supply for an i7 8700 CPU, 4 sticks of 1x16GB DDR4 memory modules, 1 SSD and up to a GTX 1x70 level graphic cards without any over clocking and 16 hours per day usage will be enough. May be this power supply will even be enough for GTX 1180 graphic card, as the graphic card chips are becoming more and more energy efficient. Yet again, do not fall for the shop keepers ploys.

Graphic Card

     Wait for the graphic new graphic cards from NVidia. The new cards are just around the corner. Local shops in Pakistan are selling 2 year old graphic cards, the GTX 10 series, at much inflated prices as compared to the rest of the world.

Conclusion

     This system will last at least 5 years, in terms of gaming with a GTX 1x70 level graphics card. It will even perform well for 10+ years if you keep upgrading it and take care of it cooling wise. Upgrade to a PCIe-NVMe SSD down the road when the prices drop, add more memory and update the graphic card every 5 years etc. Currently, the system will cost anywhere between Rs. 118,000 -Rs. 128,000, depending on you city and the shop, with an i7 processor.

     If you'd like to collaborate on research projects, please reach out. Thank you for reading.

Thursday, 21 December 2017

Coffee Lake Configurations for Computational Fluid Dynamics and Gaming with no Mechanical Storage, Pakistani Market Prices.

     These setups feature no mechanical hard drive(s).

Estimated price PKR 205,000.

     For the processor, choose the Intel Core i7-8700 for PKR 43,000. Motherboard of choice should be the Gigabyte Z370 AORUS Gaming 3 for PKR 20,500. For memory, go with the Corsair Vengeance LPX 1x16GB DDR4-3000 for PKR 23,000. Samsung 850 EVO 1TB SSD for PKR 39,500 should be the only storage option. The Gigabyte GV-N1080WF3OC-8GD GeForce GTX 1080 for PKR 68,500 graphics card. The Corsair Carbide SPEC-04 Casing for PKR 5,500. Powering the whole thing should be at least a Thermaltake Lite-Power 550W PSU for PKR 4,400.

Estimated price PKR 157,000.

     For the processor, choose the Intel Core i7-8700 for PKR 43,000. Motherboard of choice should be the Gigabyte Z370 AORUS Gaming 3 for PKR 20,500. For memory, go with the Corsair Vengeance LPX 1x16GB DDR4-3000 for PKR 23,000. Samsung 850 EVO 1TB SSD for PKR 39,500 should be the only storage option. The Asus PH-GTX1050TI-4G GTX 1050Ti for PKR 21,300 graphics card. The Corsair Carbide SPEC-04 Casing for PKR 5,500. Powering the whole thing should be at least a Thermaltake Lite-Power 550W PSU for PKR 4,400.

Estimated price PKR 167,500.

     For the processor, choose the Intel Core i5-8700 for PKR 23,000. Motherboard of choice should be the Gigabyte Z370 AORUS Gaming 3 for PKR 20,500. For memory, go with the Corsair Vengeance LPX 1x16GB DDR4-3000 for PKR 23,000. Western Digital Green 240GB and Blue 500GB SSD for PKR 9,500 and PKR 17,500 should be the storage options. The Gigabyte GV-N1080WF3OC-8GD GeForce GTX 1070Ti for PKR 64,000 graphics card. The Corsair Carbide SPEC-04 Casing for PKR 5,500. Powering the whole thing should be at least a Thermaltake Lite-Power 550W PSU for PKR 4,400.

Estimated price PKR 137,000.

     For the processor, choose the Intel Core i5-8700 for PKR 23,000. Motherboard of choice should be the Gigabyte Z370 AORUS Gaming 3 for PKR 20,500. For memory, go with the Corsair Vengeance LPX 1x16GB DDR4-3000 for PKR 23,000. Western Digital Blue 500GB SSD for PKR 17,500 should be the storage option. The Asus STRIX-GTX1060-DC2O6G GTX 1060 for PKR 43,000 graphics card. The Corsair Carbide SPEC-04 Casing for PKR 5,500. Powering the whole thing should be at least a Thermaltake Lite-Power 550W PSU for PKR 4,400.

Estimated price PKR 106,000.

     For the processor, choose the Intel Core i3-8100 for PKR 14,500. Motherboard of choice should be the Gigabyte Z370 AORUS Gaming 3 for PKR 20,500. For memory, go with the Corsair Vengeance LPX 1x16GB DDR4-3000 for PKR 23,000. Western Digital Blue 500GB SSD for PKR 17,500 should be the storage option. The Asus PH-GTX1050TI-4G GTX 1050Ti for PKR 21,300 graphics card. The Corsair Carbide SPEC-04 Casing for PKR 5,500. Powering the whole thing should be at least a Thermaltake Lite-Power 450W PSU for PKR 3,800.

     Only the first configuration is suitable for both gaming and computational fluid dynamics (CFD). If you need a system for CFD alone, then the second configuration will be sufficient, all other configurations can be referred to as general purpose gaming PCs.

Sunday, 5 July 2015

Canal Turbine Concept


It's a concept I am currently working on, so far I gave made a CAD model (renderings attached) of it in SolidWorks and analyzed it using its built in CFD module.

There are many advantages of canal turbines over wind turbines, prominent one's being:

 

Unidirectional flow


Water flows in one direction in a canal so we don't need pitch and yaw control surfaces. That simplifies the design process and reduces weight.

Constant flow rate


We (humans) control water flow rate through canals and it's almost same all year, so we don't have to worry about blade aero foil design to suit variable/abruptly variable flow rate, that makes design process further straight forward.

Large Electricity potential


Canals are 100s of km long, imagine the electricity potential in the canals. You can put these turbines in irrigation canals and it'll power nearby villages and all the irrigation equipment etc.

Higher Power/Discharge Ratio


Water is ~816 times dense (powerful) than air, so for the same discharge (flow) rate we get potentially 816 times more power. Which means more we can make designs that are lighter, smaller and easier to manage and maintain.

Easy maintenance


Fitted less than ~1 m deep inside the canal and can be retracted for maintenance at ground level, making maintenance very easy or better yet, we can maintain them while canals are being cleaned.


Comparison between Lift and Drag Produced by a Legacy Wing VS a Wing with Tubercles (Humpback Whale Fin's Inspired)

* Link for Plots (now showing here for some reason) http://3dimensionaldesigningandmanufacturing.blogspot.com/2015/07/plots-for-comparison-between-lift-and.html

Following data was obtained from the CFD Simulations carried out in SolidWorks Flow Simulation Premium.

Project: Design of a Wing/Blade with Tubercles for Airplanes and/or Turbines


Without Tubercles

Air Speed in Km/h

Lift in N

Drag in N

150
46.307
14.775
140
39.942
12.917
130
33.432
11.057
                         120
28.807
9.498
110
24.234
7.928
100
20.593
6.625
90
15.836
5.352
80
12.482
4.205
70
9.411
3.243
60
7.272
2.406
50
4.873
1.680
40
3.130
1.082
30
1.763
0.612
20
0.810
0.279
10
0.231
0.072

 

 

With Tubercles

Air Speed in Km/h

Lift in N

Drag in N

150
50.616
11.360
140
48.131
10.008
130
37.190
8.505
120
30.988
7.309
110
24.784
6.079
100
20.892
5.094
90
17.225
4.146
80
13.412
3.287
70
9.955
2.507
60
7.444
1.849
50
4.955
1.286
40
2.991
0.828
30
1.652
0.468
20
0.725
0.212
10
0.214
0.057

 

Comparison between Lift and Drag


Air Speed in Km/h
Percentage Less Drag
Percentage More Lift
150
23.113
 
8.513
140
22.520
 
17.014
130
23.080
 
10.105
120
22.974
7.038
110
23.322
2.219
100
23.109
1.431
90
22.534
8.064
80
21.831
6.934
70
22.695
5.465
60
23.150
2.311
50
23.452
1.655
40
23.475
-7.523
30
23.529
-6.719
20
24.014
-11.72
10
20.833
-7.94
 
 
 
 

 

It is clear that the wing with tubercles not only produces more lift at a particular velocity but also less drag.

Data for the Wing without Tubercles:


Wing Span: 1.07 m

Chord Length: 0.229 m

Air Velocity: 0-150 Km/h head on

Vertical Pitch: 0 Degree

Gravity Considered

Fluid: Dry Air at STP

Mesh Settings: Coarse (3/8)


Data for the Wing with Tubercles:


Wing Span: 1.067 m

Chord Length Large: 0.229 m

Chord Length Small: 0.203 m

Air Velocity: 0-150 Km/h head on

Vertical Pitch: 0 Degree

Gravity Considered

Fluid: Dry Air at STP

Mesh Settings: Coarse (3/8)


Let's now take a look at visual representation of data.


This Plot Shows Air Velocity VS Drag, Lift by the Wing without Tubercles


This Plot Shows Air Velocity VS Drag, Lift by the Wing with Tubercles

As you can see from above two plots; the wing with tubercles generates more lift and less drag.


This Plot Shows Air Velocity VS Lift Generated by the Wings

The green line represents the Lift generated by the wing with tubercles. It is between two to six percent more at each velocity.


This Plot Shows Air Velocity VS Drag Generated by the Wings

The green line represents the Drag generated by the wing with tubercles. It is around twenty two percent less at each velocity.


This Plot Shows Air velocity VS Lift to Drag Ratio

It is clear from this plot that Lift to Drag ratio of the wing with tubercles is around thirty three percent more for the wing without tubercles at a velocity point.

 


This Plot Shows Air Flow around the Wings at 150 Km/h from the Right Side


This Plot Shows Air Flow around the Wings at 150 Km/h

The Need for Tubercles


In aviation there are four forces at play, Lift which over comes Weight and Thrust which overcomes Drag. For a cruise speed at a particular altitude, three of these forces are almost constant. Our goal is to minimize Thrust, Drag and Weight and maximize Lift, this is because Thrust costs in terms of fuel flow rate and Weight and Drag negatively impacts on the agility of the aircraft. Aerodynamically efficient Wings and/or Blades with "Tubercles" will not only increase Lift and but also decrease Drag. This all means that we will need less Thrust for a cruise speed than before, that results in savings in terms of fuel which will result in healthier environment.

 

Applications:


 


Canal Turbine Concept


It's a concept I am currently working on, so far I gave made a CAD model (renderings attached) of it in SolidWorks and analyzed it using its built in CFD module.

There are many advantages of canal turbines over wind turbines, prominent one's being:

 

Unidirectional flow


Water flows in one direction in a canal so we don't need pitch and yaw control surfaces. That simplifies the design process and reduces weight.

Constant flow rate


We (humans) control water flow rate through canals and it's almost same all year, so we don't have to worry about blade aero foil design to suit variable/abruptly variable flow rate, that makes design process further straight forward.

Large Electricity potential


Canals are 100s of km long, imagine the electricity potential in the canals. You can put these turbines in irrigation canals and it'll power nearby villages and all the irrigation equipment etc.

Higher Power/Discharge Ratio


Water is ~816 times dense (powerful) than air, so for the same discharge (flow) rate we get potentially 816 times more power. Which means more we can make designs that are lighter, smaller and easier to manage and maintain.

Easy maintenance


Fitted less than ~1 m deep inside the canal and can be retracted for maintenance at ground level, making maintenance very easy or better yet, we can maintain them while canals are being cleaned.