Showing posts with label aerodynamics. Show all posts
Showing posts with label aerodynamics. Show all posts

Friday, 26 June 2020

Heaving Airfoil Simulation

This post is about a 2D NACA 0012 heaving aerofoil. Heaving motion is achieved by changing the angle of attack on the aerofoil based on the Eqn. 1.

αe = arctan[2*π*Sta*cos(2*π*fh*t)]+ αi               Eqn. 1

w.r.t. Eqn. 1, αe is the effective angle of attack, Sta is Strouhal number, fh is the heaving frequency.

The case S1 and H6 from [1] are compared in the animations below.


If you want to collaborate on the research projects related to turbomachinery, aerodynamics, renewable energy, please reach out. Thank you very much for reading.

References

[1] https://doi.org/10.1121/10.0001419

Sunday, 7 October 2018

High Camber Wing CFD Simulation

     This post is about the numerical simulation of a high camber, large aspect ratio wing. The wing had an aspect ratio of 5:1. The Reynolds number of flow was 500,000. The wing was at an angle of attack of zero degree. The aero-foil employed had a cross section of NACA 9410.

     The software employed was Flow Simulation Premium. A Cartesian mesh was created using the immersed boundary method. The mesh had 581,005 cells. Among those 581,005 cells, 55,882 were at the solid-fluid boundary. A time step of ~0.00528167 s was employed*. The domain was large enough to accurately trace the flow around the wing without any numerical or reversed flow errors. The software employs κ-ε turbulence model with damping functions, SIMPLE-R (modified) as the numerical algorithm and second order upwind and central approximations as the spatial discretization schemes for the convective fluxes and diffusive terms. The time derivatives are approximated with an implicit first-order Euler scheme.

     The mesh is shown in Fig. 1. The four layers of different mesh density are also visible in Fig. 1, the mesh is refined near the wing surface using a mesh control. The velocity around the wing section is shown in Fig. 2, using a cut plot at  the center of the wing. In Fig. 2, the wing body is super imposed by pressure plot. The velocity vectors showing the direction of flow are superimposed on both the wing body and the velocity cut plot.


Fig. 1, The computational domain.


Fig. 2, The velocity and pressure plots.

     The results of the simulation was validated against the results from XFLR5 software. XFLR5 predicted slightly higher lift and slightly less drag on the wing for same boundary conditions because the XFLR5 simulations were inviscid.

     Thank you for reading. If you would like to contribute to the research, both financially and scientifically, please feel free to reach out.

     *Time step is averaged because of the fact that a smaller time step was employed at the start of the numerical simulation.

Monday, 10 September 2018

Computational Fluid Dynamics Analysis of a Symmetrical Wing, Update 01

     This post is about the computational fluid dynamics analysis of a wing. The wing analyzed employed the NACA 0021 section throughout. The wing had a span of 4 m and a chord length of 1 m. The Reynolds number was kept at 3,000,000. The software employed was SolidWorks Flow Simulation Premium.

     The mesh had a total of 385,064 cells of which 84,826 cells were in contact with the wing surface, as shown in Fig. 1. The results are, indeed, mesh independent. Mesh controls were employed to refine the mesh near the wing surface. The computational domain employed was of cylindrical shape.

 
Fig. 1, The computational mesh around the wing.
 
     The velocity variation at various angles of attack around the wing cross-section is shown in Fig. 3 while the pressure variation on the wing surface is shown in Fig. 4. The results were validated against experiments conducted by [1].

 
Fig. 2, Velocity variation around the wing at 0-25 degree AOA, 5 degree increments.

 
Fig. 3, Pressure variation at the wing surface at 0-25 degree AOA, 5 degree increments.

     The purpose of this blog is maintain my online portfolio. I did this analysis because I realized I haven't written anything of this nature before. All of my previous simulations and/or blog entries were from the propulsion, renewable energy and turbo-machinery areas.
 

     Update 01

     CAD files are available here.
 
    
     Thank you for reading. If you would like to collaborate on research projects, please feel free to contact.

     [1] Fernando A. Rocha, Adson A. de Paula, Marcos d. Sousa, André V. Cavalieri, and Vitor G. Kleine, "Lift enhancement by wavy leading edges at Reynolds numbers between 700,000 and 3,000,000," Proceedings of the 2018 Applied Aerodynamics Conference, AIAA AVIATION Forum, Atlanta, GA, 2018.