Sunday, 7 October 2018

High Camber Wing CFD Simulation

     This post is about the numerical simulation of a high camber, large aspect ratio wing. The wing had an aspect ratio of 5:1. The Reynolds number of flow was 500,000. The wing was at an angle of attack of zero degree. The aero-foil employed had a cross section of NACA 9410.

     The software employed was Flow Simulation Premium. A Cartesian mesh was created using the immersed boundary method. The mesh had 581,005 cells. Among those 581,005 cells, 55,882 were at the solid-fluid boundary. A time step of ~0.00528167 s was employed*. The domain was large enough to accurately trace the flow around the wing without any numerical or reversed flow errors. The software employs κ-ε turbulence model with damping functions, SIMPLE-R (modified) as the numerical algorithm and second order upwind and central approximations as the spatial discretization schemes for the convective fluxes and diffusive terms. The time derivatives are approximated with an implicit first-order Euler scheme.

     The mesh is shown in Fig. 1. The four layers of different mesh density are also visible in Fig. 1, the mesh is refined near the wing surface using a mesh control. The velocity around the wing section is shown in Fig. 2, using a cut plot at  the center of the wing. In Fig. 2, the wing body is super imposed by pressure plot. The velocity vectors showing the direction of flow are superimposed on both the wing body and the velocity cut plot.


Fig. 1, The computational domain.


Fig. 2, The velocity and pressure plots.

     The results of the simulation was validated against the results from XFLR5 software. XFLR5 predicted slightly higher lift and slightly less drag on the wing for same boundary conditions because the XFLR5 simulations were inviscid.

     Thank you for reading. If you would like to contribute to the research, both financially and scientifically, please feel free to reach out.

     *Time step is averaged because of the fact that a smaller time step was employed at the start of the numerical simulation.

No comments:

Post a Comment