Showing posts with label Improvement. Show all posts
Showing posts with label Improvement. Show all posts

Thursday, 20 August 2020

The Fan Car

     The idea to reduce Drag and/or improve Downforce on a vehicle using fans at the rear has been around for decades. Specially in the world of motorsports. Examples include Gordon Murray's BT46 and the T50. Here an explanation is made as to why placing a fan behind a car or a container-carrier truck can be used to improve fuel economy.

     The sample car model is of the renowned Ahmed Body. For validation of the numerical simulation, please refer to this post.

     Fig. 1 shows pressure isosurfaces around the car body both with and without fans installed at the rear. It is clear that the pressure difference between rear and front of the car is more when the fans are not available. More pressure difference results in more Drag and a relatively bad fuel economy.


Fig. 1, T-B; Fan disabled, fan enabled


     Fig. 2 shows cross section view of the car. It can be seen that the the boundary layer is re-energized and as a result the flow separation is significantly reduced by adding a fan at the rear. By adding a fan, the vortices are not only moved away from the rear-end of the car but also have smaller size and less intensity, as shown in Fig. 3.


Fig. 2, T-B; Fan disabled, fan enabled. Red arrows represent direction of airflow


Fig. 3, L-R; Fan disabled, fan enabled

Thank you for reading. Please share my work. If you would like to collaborate on a project please reach out.

Saturday, 29 September 2018

Improvement of the Volume Flow Rate Through a Blower Fan

     In this post, an improvement in the volume flow rate through the blower fan assembly made are presented. The only thing changed in the blower fan was the cross section of the fan blades. In the previous version, the blade cross section resembled a flat plate with fillets at the leading edge. The trailing edge in the previous design was blunt. In the modified design, there aero-foils were selected, namely NACA 9410, NACA 9420 and the NACA 9430. All the other parameters were kept the same to the previous case. The CAD models of the modified fan blades are shown in Fig. 1.

Fig. 1, Fan blade geometries.

     The velocity contours are shown in Fig. 2 while the pressure contours are shown in Fig. 3, super imposed with velocity vectors and the computational mesh. The volume flow rate was the most for the fan with blades having cross-section of NACA 9410 aero-foil, followed by the fan with blades having cross-section of NACA 9420 and the NACA 9430 cross sections, respectively.

Fig. 2, Pressure contours. Row 1, L-R; fan with the NACA 9430 and NACA 9420 cross sections. Row 2, fan with NACA 9410 cross sections.

Fig. 3, Velocity contours. Row 1, L-R; fan with the NACA 9430 and NACA 9420 cross sections. Row 2, fan with NACA 9410 cross sections.

     Thank you for reading. If you would like to collaborate, both scientifically and financially, on research projects, please reach out.