Showing posts with label navier stokes. Show all posts
Showing posts with label navier stokes. Show all posts

Wednesday, 8 January 2025

CFD Wizardry: A 50-Line Python Marvel

     In abundant spare time ⏳, yours truly has implemented the non-conservative and non-dimensional form of the discretized Navier-Stokes 🍃 equations. The code 🖳 in it's simplest form is less than 50 lines including importing libraries and plotting! 😲 For validation, refer here. More examples and free code is available here, here and here. Happy codding!

Code

# Copyright <2025> <FAHAD BUTT>
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import numpy as np
import matplotlib.pyplot as plt
l_square = 1 # length of square
h = l_square / 500 # grid spacing
dt = 0.00002 # time step
L = 1 # domain length
D = 1 # domain depth
Nx = round(L / h) + 1 # grid points in x-axis
Ny = round(D / h) + 1 # grid points in y-axis
nu = 1 / 100 # kinematic viscosity
Uinf = 1 # free stream velocity / inlet velocity / lid velocity
cfl = dt * Uinf / h # cfl number
travel = 200 # times the disturbance travels entire length of computational domain
TT = travel * L / Uinf # total time
ns = int(TT / dt) # number of time steps
Re = round(l_square * Uinf / nu) # Reynolds number
u = np.zeros((Nx, Ny)) # x-velocity
v = np.zeros((Nx, Ny)) # y-velocity
p = np.zeros((Nx, Ny)) # pressure
for nt in range(ns): # solve 2D Navier-Stokes equations
    pn = p.copy()
    p[1:-1, 1:-1] = (pn[2:, 1:-1] + pn[:-2, 1:-1] + pn[1:-1, 2:] + pn[1:-1, :-2]) / 4 - h / (8 * dt) * (u[2:, 1:-1] - u[:-2, 1:-1] + v[1:-1, 2:] - v[1:-1, :-2]) # pressure
    p[0, :] = p[1, :] # dp/dx = 0 at x = 0
    p[-1, :] = p[-2, :] # dp/dx = 0 at x = L
    p[:, 0] = p[:, 1] # dp/dy = 0 at y = 0
    p[:, -1] = 0 # p = 0 at y = D
    un = u.copy()
    vn = v.copy()
    u[1:-1, 1:-1] = (un[1:-1, 1:-1] - dt / (2 * h) * (un[1:-1, 1:-1] * (un[2:, 1:-1] - un[:-2, 1:-1]) + vn[1:-1, 1:-1] * (un[1:-1, 2:] - un[1:-1, :-2])) - dt / (2 * h) * (p[2:, 1:-1] - p[:-2, 1:-1]) + (1 / Re) * dt / h**2 * (un[2:, 1:-1] + un[:-2, 1:-1] + un[1:-1, 2:] + un[1:-1, :-2] - 4 * un[1:-1, 1:-1])) # x momentum
    u[0, :] = 0 # u = 0 at x = 0
    u[-1, :] = 0 # u = 0 at x = L
    u[:, 0] = 0 # u = 0 at y = 0
    u[:, -1] = Uinf # u = Uinf at y = D
    v[1:-1, 1:-1] = (vn[1:-1, 1:-1] - dt / (2 * h) * (un[1:-1, 1:-1] * (vn[2:, 1:-1] - vn[:-2, 1:-1]) + vn[1:-1, 1:-1] * (vn[1:-1, 2:] - vn[1:-1, :-2])) - dt / (2 * h) * (p[1:-1, 2:] - p[1:-1, :-2]) + (1 / Re) * dt / h**2 * (vn[2:, 1:-1] + vn[:-2, 1:-1] + vn[1:-1, 2:] + vn[1:-1, :-2] - 4 * vn[1:-1, 1:-1])) # y momentum
    v[0, :] = 0 # v = 0 at x = 0
    v[-1, :] = 0 # v = 0 at x = L
    v[:, 0] = 0 # v = 0 at y = 0
    v[:, -1] = 0 # v = 0 at y = D
X, Y = np.meshgrid(np.linspace(0, L, Nx), np.linspace(0, D, Ny)) # spatial grid
plt.figure(dpi = 200)
plt.contourf(X, Y, v.T, 128, cmap = 'jet') # plot contours
plt.colorbar()
plt.streamplot(X, Y, u.T, v.T, color = 'black', cmap = 'jet', density = 2, linewidth = 0.5, arrowstyle='->', arrowsize = 1) # plot streamlines
plt.gca().set_aspect('equal', adjustable='box')
plt.xticks([0, L])
plt.yticks([0, D])
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.show()

Lid-Driven Cavity

     The case of lid-driven cavity in the turbulent flow regime can now be solved in reasonable amount of time. The results are shown in Fig. 1. I stopped the code while the flow is still developing as you are reading a blog and not a Q1 journal. 😆 Within Fig. 1, streamlines, v and u component of velocity and pressure are shown going from left to right and top to bottom. At the center of Fig. 1, the velocity magnitude is superimposed. As this is DNS, the smallest spatial scale resolved is ~8e-3 m [8 mm]. While, the smallest time-scale ⌛ resolved is ~8e-4 s [0.8 ms].

Fig. 1, The results at Reynolds number of 10,000

Free-Jet

          The case of free jets in the turbulent flow regime can now be solved in reasonable amount of time. The results are shown in Fig. 2. I stopped the code while the flow is still developing. Once again, I remind you that you are reading a blog and not a Q1 journal. 😆 Within Fig. 2, streamlines and species are shown. As this is DNS, the smallest spatial scale resolved is ~0.02 m [2 cm]. While, the smallest time-scale ⌛ resolved is ~4e-4 s [0.4 ms]. The code for implementing species, in this case temperature using the energy equation is available on the previous post.

Fig. 2, Free jet at Reynolds number 10000

Heated Room

     The benchmark case of mixed convection in an open room in the turbulent flow regime can now be solved in reasonable amount of time as well. The results are shown in Fig. 3. I stopped the code while the flow field stopped showing any changes. 😆 As this is DNS, the smallest spatial scale resolved is ~0.0144 m [1.44 cm]. While, the smallest time-scale ⌛ resolved is ~1e-4 s [1 ms]. The code for implementing species, in this case temperature using the energy equation is available on the previous post. In the previous post, the momentum equation has no changes as the gravity vector is at 0 m/s2. For this example, Boussinesq assumption is used.

Fig. 3, Flow inside a heated room at Reynolds number of 5000

Backward - Facing Step (BFS)

     Another benchmark case of flow around a backwards facing step can now be solved in reasonable amount of time as well. The flow is fully turbulent. The results are shown in Fig. 4. I stopped the code while the flow field is still developing. 😆 As this is DNS, the smallest spatial scale resolved is ~0.01 m [1 cm]. While, the smallest time-scale ⌛ resolved is ~1e-4 s [1 ms]. As can be seen from Fig. 4, there are no abnormalities in the flow field.

Fig. 4, Flow around a backwards facing step at Reynolds number of 10000

PS: I fully understand, there is no such thing as 2D turbulence 🍃. Just don't kill the vibe please 💫.

     Thank you for reading! If you want to hire me as your next shinning post-doc, do let reach out!

Sunday, 5 January 2025

16th Step of the 12 steps to Navier-Stokes 😑

      FOANSS, i.e. Fadoobaba's Open Advanced Navier-Stokes 🌬 Solver is now capable to simulate flow with species with / without obstacles of course 🤓. In this example, the species is temperature. Gravity is not considered so the momentum equations are unchanged from Step 14. The non dimensional version of energy equation has been used. Mach number term is removed as Reynolds number is very low 😱. These blog posts are written for educational purposes, hence the over simplifications! A remainder that you are reading a blog, not a Q1 journal 😃.

     The simulated case is called the case of flow around an obstacle. Like a heat sink fin ⬜. The fin / box is heated in the example shown in Fig. 1. For validation, read hereThis code and blog post is not endorsed or approved by Dr. Barba, I just continue the open-source work of her. The 13th and 15th Steps are available for reading along with code.

Fig. 1, Temperature contours with streamlines


Code

# Copyright <2024> <FAHAD BUTT>

# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#%% import libraries

import numpy as np

import matplotlib.pyplot as plt

#%% define spatial and temporal grids

l_square = 1 # length of square

h = l_square / 50 # grid spacing

dt = 0.002 # time step

L = 35 # domain length

D = 21 # domain depth

Nx = round(L / h) + 1 # grid points in x-axis

Ny = round(D / h) + 1 # grid points in y-axis

nu = 1 / 100 # kinematic viscosity

Uinf = 1 # free stream velocity / inlet velocity / lid velocity

cfl = dt * Uinf / h # cfl number

travel = 2 # times the disturbance travels entire length of computational domain

TT = travel * L / Uinf # total time

ns = int(TT / dt) # number of time steps

Re = round(l_square * Uinf / nu) # Reynolds number

Pr = 0.7 # Prandtl number

rho = 1 # fluid density

#%% initialize flowfield

u = Uinf * np.ones((Nx, Ny)) # x-velocity

v = np.zeros((Nx, Ny)) # y-velocity

p = np.zeros((Nx, Ny)) # pressure

T = np.ones((Nx, Ny)) # temperature

X, Y = np.meshgrid(np.linspace(0, L, Nx), np.linspace(0, D, Ny)) # spatial grid

#%% solve 2D Navier-Stokes equations

for nt in range(ns):

    pn = p.copy()

    p[1:-1, 1:-1] = (pn[2:, 1:-1] + pn[:-2, 1:-1] + pn[1:-1, 2:] + pn[1:-1, :-2]) / 4 - h * rho / (8 * dt) * (u[2:, 1:-1] - u[:-2, 1:-1] + v[1:-1, 2:] - v[1:-1, :-2]) # pressure

    # boundary conditions for pressure

    p[0, :] = p[1, :] # dp/dx = 0 at x = 0

    p[-1, :] = 0 # p = 0 at x = L

    p[:, 0] = p[:, 1] # dp/dy = 0 at y = 0

    p[:, -1] = p[:, -2] # dp/dy = 0 at y = D

    p[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box geometry

    p[round(10 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = p[round(10 * Nx / L) - 1, round(10 * Ny / D):round(11 * Ny / D)] # box left

    p[round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = p[round(11 * Nx / L) + 1, round(10 * Ny / D):round(11 * Ny / D)] # box right

    p[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D)] = p[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D) - 1] # box bottom

    p[round(10 * Nx / L):round(11 * Nx / L), round(11 * Ny / D)] = p[round(10 * Nx / L):round(11 * Nx / L), round(11 * Ny / D) + 1] # box top

    un = u.copy()

    vn = v.copy()

    u[1:-1, 1:-1] = (un[1:-1, 1:-1] - dt / (2 * h) * (un[1:-1, 1:-1] * (un[2:, 1:-1] - un[:-2, 1:-1]) + vn[1:-1, 1:-1] * (un[1:-1, 2:] - un[1:-1, :-2])) - dt / (2 * rho * h) * (p[2:, 1:-1] - p[:-2, 1:-1]) + nu * dt / h**2 * (un[2:, 1:-1] + un[:-2, 1:-1] + un[1:-1, 2:] + un[1:-1, :-2] - 4 * un[1:-1, 1:-1])) # x momentum

    # boundary conditions for x-velocity

    u[0, :] = Uinf # u = Uinf at x = 0

    u[-1, :] = u[-2, :] # du/dx = 0 at x = L

    u[:, 0] = Uinf # u = 0 at y = 0

    u[:, -1] = Uinf # u = 0 at y = D

    u[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box geometry

    u[round(10 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box left

    u[round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box right

    u[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D)] = 0 # box bottom

    u[round(11 * Nx / L):round(11 * Nx / L), round(11 * Ny / D)] = 0 # box top

    v[1:-1, 1:-1] = (vn[1:-1, 1:-1] - dt / (2 * h) * (un[1:-1, 1:-1] * (vn[2:, 1:-1] - vn[:-2, 1:-1]) + vn[1:-1, 1:-1] * (vn[1:-1, 2:] - vn[1:-1, :-2])) - dt / (2 * rho * h) * (p[1:-1, 2:] - p[1:-1, :-2]) + nu * dt / h**2 * (vn[2:, 1:-1] + vn[:-2, 1:-1] + vn[1:-1, 2:] + vn[1:-1, :-2] - 4 * vn[1:-1, 1:-1])) # y momentum

    # boundary conditions for y-velocity

    v[0, :] = 0 # v = 0 at x = 0

    v[-1, :] = v[-2, :] # dv/dx = 0 at x = L

    v[:, 0] = 0 # v = 0 at y = 0

    v[:, -1] = 0 # v = 0 at y = D

    v[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box geometry

    v[round(10 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box left

    v[round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box right

    v[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D)] = 0 # box bottom

    v[round(11 * Nx / L):round(11 * Nx / L), round(11 * Ny / D)] = 0 # box top

    Tn = T.copy()

    T[1:-1, 1:-1] = Tn[1:-1, 1:-1] - (dt / (2 * h)) * (u[1:-1, 1:-1] * (Tn[2:, 1:-1] - Tn[:-2, 1:-1]) + v[1:-1, 1:-1] * (Tn[1:-1, 2:] - Tn[1:-1, :-2])) + (dt / (h**2 * Re * Pr)) * ((Tn[2:, 1:-1] - 2 * Tn[1:-1, 1:-1] + Tn[:-2, 1:-1]) + (Tn[1:-1, 2:] - 2 * Tn[1:-1, 1:-1] + Tn[1:-1, :-2])) # energy

    T[0, :] = 1 # T = 0 at x = 0

    T[-1, :] = T[-2, :] # dT/dx = 0 at x = L

    T[:, 0] = 1 # T = 0 at y = 0

    T[:, -1] = 1 # T = 0 at y = D

    T[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box geometry

    T[round(10 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box left

    T[round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box right

    T[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D)] = 0 # box bottom

    T[round(11 * Nx / L):round(11 * Nx / L), round(11 * Ny / D)] = 0 # box top

#%% post-processing

velocity_magnitude = np.sqrt(u**2 + v**2)  # velocity magnitude

u1 = u.copy() # u-velocity for plotting with box

v1 = v.copy() # v-velocity for plotting with box

p1 = p.copy() # pressure for plotting with box

T1 = T.copy() # temperature for plotting with box

# box geometry for plotting

u1[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = np.nan

v1[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)]  = np.nan

p1[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)]  = np.nan

T1[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)]  = np.nan

velocity_magnitude1 = np.sqrt(u1**2 + v1**2) # velocity magnitude with box

# visualize velocity vectors and pressure contours

plt.figure(dpi = 500)

plt.contourf(X, Y, u1.T, 128, cmap = 'hsv')

# plt.colorbar()

plt.gca().set_aspect('equal', adjustable='box')

plt.xticks([0, L])

plt.yticks([0, D])

plt.xlabel('x [m]')

plt.ylabel('y [m]')

plt.show()

plt.figure(dpi = 500)

plt.contourf(X, Y, v1.T, 128, cmap = 'turbo')

# plt.colorbar()

plt.gca().set_aspect('equal', adjustable='box')

plt.xticks([0, L])

plt.yticks([0, D])

plt.xlabel('x [m]')

plt.ylabel('y [m]')

plt.show()

plt.figure(dpi = 500)

plt.contourf(X, Y, p1.T, 128, cmap = 'gist_rainbow')

# plt.colorbar()

plt.gca().set_aspect('equal', adjustable='box')

plt.xticks([0, L])

plt.yticks([0, D])

plt.xlabel('x [m]')

plt.ylabel('y [m]')

plt.show()

plt.figure(dpi = 500)

plt.contourf(X, Y, T1.T, 128, cmap = 'jet')

# plt.colorbar()

plt.gca().set_aspect('equal', adjustable='box')

plt.xticks([0, L])

plt.yticks([0, D])

plt.xlabel('x [m]')

plt.ylabel('y [m]')

plt.show()

plt.figure(dpi = 500)

plt.streamplot(X, Y, u1.T, v1.T, color = 'black', cmap = 'jet', density = 2, linewidth = 0.5,\

                    arrowstyle='->', arrowsize = 1)  # plot streamlines

plt.gca().set_aspect('equal', adjustable = 'box')

plt.axis('off')

plt.show()

     Thank you very much for reading! If you want to hire me as your new shinning post-doc or want to collaborate on the research, please reach out!

Saturday, 21 December 2024

2D Heat Equation Code (Finite Difference Method)

     After 🎉 successfully teaching 👨‍🏫 the neural network about the 🔥 heat / diffusion 💉 equation, yours truly thought it is the time ⏱️ to write a simple code 🖥️ for discretized domain as well. A code yours truly created in abundant spare time is mentioned in this blog 📖.

     A complex (sinusoidal) 🌊 boundary condition is implemented. Dirichlet and Neumann boundary conditions are also implemented. The code is vectorized ↗ so there is only one loop 😁.  CFL condition is implemented in the time-step calculation so time-step ⏳ is adjusted based on the mesh size automatically 😇.

     For simple geometries, traditional numerical methods are is still better than PINNs. 🧠

Code

#Copyright <2024> <FAHAD BUTT>
#Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
#The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import numpy as np
import matplotlib.pyplot as plt
# mesh parameters
L = 1 # length of plate
D = np.pi # width of plate
h = 1 / 50 # grid size
Nx = int((L / h) + 1) # grid points in x-axis
Ny = int((D / h) + 1) # grid points in y-axis
alpha = 1 # thermal diffusivity
dt = h**2 / (4 * alpha) # time step (based on CFL condition)
total_time = 1 # total time
nt = int(total_time / dt) # total time steps
# initialization
T = np.zeros((Nx, Ny)) # initial condition
T_new = np.zeros_like(T)
x = np.linspace(0, L, Nx)
y = np.linspace(0, D, Ny)
# solve 2D-transient heat equation
for n in range(nt):
    T_new[1:-1, 1:-1] = T[1:-1, 1:-1] + ((alpha * dt) / h**2) * (T[2:, 1:-1] + T[:-2, 1:-1] + T[1:-1, 2:] + T[1:-1, :-2] - 4 * T[1:-1, 1:-1])
    T[:, :] = T_new
    # apply boundary conditions
    T[0, :] = np.sin(2 * np.pi * y / D) # T = sin(y) at x = 0
    T[-1, :] = T[-2, :] # dT/dx = 0 at x = L
    T[:, 0] = 0 # T = 0 at y = 0
    T[:, -1] = 0 # T = 0 at y = D
# plotting
X, Y = np.meshgrid(x, y, indexing="ij")
plt.figure(dpi = 500)
plt.contourf(X, Y, T, levels = 64, cmap = "jet")
plt.gca().set_aspect('equal', adjustable = 'box')
plt.colorbar(label = "Temperature")
plt.title("Temperature Distribution")
plt.xlabel("x")
plt.ylabel("y")
plt.show()

     The code creates the output as shown in Fig. 1.



Fig. 1, Temperature distribution

     Thank you for reading! If you want to hire me as a post-doc researcher in the fields of thermo-fluids and / or fracture mechanics, do reach out!

Tuesday, 7 May 2024

14th Step of the 12 steps to Navier-Stokes 😑

     After the tremendous success of 13th Step (thanks to the two people who read it, don't understand why they even bothered? 😂) The 14th step now exists! This case is called the case of flow around an obstacle! Like a box. ⬜ This is an unofficial continuation to this. If I get it approved by Dr. Barba, then it will be official. The original series is in Python but I coded this in MATLAB without using many MATLAB specific functions so the code can be translated to other programing languages 🖧 quite easily 😊.

     In terms of validation, Strouhal number is at 0.145 [1-4] for flow around a square cylinder at Re 100. This code gives St of 0.141. 🤓 Fig. 1 shows results from the code.

Fig. 1, Post processing

Code

%% clear and close
close all
clear
clc
beep off % annoying beep off :)
%% define spatial and temporal grids
l_square = 1; % length of square
h = l_square/10; % grid spacing
dt = 1; % time step
L = 40; % cavity length
D = 15; % cavity depth
Nx = round((L/h)+1); % grid points in x-axis
Ny = round((D/h)+1); % grid points in y-axis
nu = 0.000015111; % kinematic viscosity
Uinf = 0.0015111; % free stream velocity / inlet velocity  / lid velocity
cfl = dt*Uinf/h; % % cfl number
travel = 10; % times the disturbance travels entire length of computational domain
TT = travel*L/Uinf; % total time
ns = TT/dt; % number of time steps
Re = l_square*Uinf/nu; % Reynolds number
rho = 1.2047; % fluid density
%% initialize flowfield
u = Uinf*ones(Nx,Ny); % x-velocity
v = zeros(Nx,Ny); % y-velocity
p = zeros(Nx,Ny); % pressure
i = 2:Nx-1; % spatial interior nodes in x-axis
j = 2:Ny-1; % spatial interior nodes in y-axis
[X, Y] = meshgrid(0:h:L, 0:h:D); % spatial grid
maxNumCompThreads('automatic'); % select CPU cores
%% solve 2D Navier-Stokes equations
for nt = 1:ns
    pn = p;
    p(i, j) = (pn(i+1, j)+pn(i-1, j)+pn(i, j+1)+pn(i, j-1))/4 ...
        -h*rho/(8*dt)*(u(i+1, j)-u(i-1, j)+v(i, j+1)-v(i, j-1)); % pressure poisson
    p(1, :) = p(2, :); % dp/dx = 0 at x = 0
    p(Nx, :) = 0; % p = 0 at x = L
    p(:, 1) = p(:, 2); % dp/dy = 0 at y = 0
    p(:, Ny) = p(:, Ny-1); % dp/dy = 0 at y = D
    p(round(5*Nx/L:6*Nx/L), round(7*Ny/D:8*Ny/D)) = 0; % box geometry
    p(round(5*Nx/L), round(7*Ny/D:8*Ny/D)) = p(round(5*Nx/L)-1, round(7*Ny/D:8*Ny/D)); % left side
    p(round(6*Nx/L), round(7*Ny/D:8*Ny/D)) = p(round(6*Nx/L)+1, round(7*Ny/D:8*Ny/D)); % right side
    p(round(5*Nx/L:6*Nx/L), round(7*Ny/D)) = p(round(5*Nx/L:6*Nx/L), round(7*Ny/D)-1); % bottom side
    p(round(5*Nx/L:6*Nx/L), round(8*Ny/D)) = p(round(5*Nx/L:6*Nx/L), round(8*Ny/D)+1); % top side
    un = u;
    vn = v;
    u(i, j) = un(i, j)-dt/(2 * h)*(un(i, j).*(un(i+1, j)-un(i-1, j))+vn(i, j).*(un(i, j+1)-un(i, j-1))) ...
        -dt/(2*rho*h)*(p(i+1, j)-p(i-1, j)) ...
        +nu*dt/h^2*(un(i+1, j)+un(i-1, j)+un(i, j+1)+un(i, j-1)-4*un(i, j)); % x-momentum
    u(1, :) = Uinf; % u = Uinf at x = L
    u(Nx, :) = u(Nx-1, :); % du/dx = 0 at x = L
    u(:, 1) = 0; % u = 0 at y = 0
    u(:, Ny) = 0; % u = 0 at y = D
    u(round(5*Nx/L:6*Nx/L), round(7*Ny/D:8*Ny/D)) = 0; % box geometry
    u(round(5*Nx/L), round(7*Ny/D:8*Ny/D)) = 0; % left side
    u(round(6*Nx/L), round(7*Ny/D:8*Ny/D)) = 0; % right side
    u(round(5*Nx/L:6*Nx/L), round(7*Ny/D)) = 0; % bottom side
    u(round(5*Nx/L:6*Nx/L), round(8*Ny/D)) = 0; % top side
    v(i, j) = vn(i, j)-dt/(2*h)*(un(i, j).*(vn(i+1, j)-vn(i-1, j))+vn(i, j).*(vn(i, j+1)-vn(i, j-1))) ...
        -dt/(2*rho*h)*(p(i, j+1)-p(i, j-1)) ...
        + nu*dt/h^2*(vn(i+1, j)+vn(i-1, j)+vn(i, j+1)+vn(i, j-1)-4*vn(i, j)); % y-momentum
    v(1, :) = 0; % v = 0 at x = L
    v(Nx, :) = v(Nx-1, :); % dv/dx = 0 at x = L
    v(:, 1) = 0; % v = 0 at y = 0
    v(:, Ny) = 0; % v = 0 at y = D
    v(round(5*Nx/L:6*Nx/L), round(7*Ny/D:8*Ny/D)) = 0; % box geometry
    v(round(5*Nx/L), round(7*Ny/D:8*Ny/D)) = 0; % left side
    v(round(6*Nx/L), round(7*Ny/D:8*Ny/D)) = 0; % right side
    v(round(5*Nx/L:6*Nx/L), round(7*Ny/D)) = 0; % bottom side
    v(round(5*Nx/L:6*Nx/L), round(8*Ny/D)) = 0; % top side
end
%% post-processing
velocity_magnitude = sqrt(u.^2 + v.^2); % velocity magnitude
u1 = u; % u-velocity for plotting with box
v1 = v; % v-velocity for plotting with box
p1 = p; % p-velocity for plotting with box
u1(round(5*Nx/L:6*Nx/L), round(7*Ny/D:8*Ny/D)) = NaN; % step geometry
v1(round(5*Nx/L:6*Nx/L), round(7*Ny/D:8*Ny/D)) = NaN; % step geometry
p1(round(5*Nx/L:6*Nx/L), round(7*Ny/D:8*Ny/D)) = NaN; % step geometry
velocity_magnitude1 = sqrt(u1.^2 + v1.^2); % velocity magnitude with box
%% Visualize velocity vectors and pressure contours
hold on, axis off
contourf(X, Y, u1', 64, 'LineColor', 'none'); % contour plot
set(gca, 'FontSize', 20)
hh = streamslice(X, Y, u1', v1', 20); % streamlines
set(hh, 'Color', 'k','LineWidth', 01);
colorbar; % add color bar
colormap jet % set color map
axis equal % set true scale
xlim([0 L]); % set axis limits
ylim([2 13]);
xticks([0 L]) % set ticks
yticks([0 D]) % set ticks
xlabel('x [m]');
ylabel('y [m]');

Cite as:

Fahad Butt (2024). Flow Around Square Cylinder (https://fluiddynamicscomputer.blogspot.com/), Blogger. Retrieved Month Date, Year

Copyright <2024> <Fahad Butt>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Python version:

     As the original series is in Python, here is the Python code for Step 14 of 12. Also, I removed mixed terms from pressure poisson equation, just because 😁.


# Copyright <2024> <FAHAD BUTT>
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#%% import libraries
import numpy as np
import matplotlib.pyplot as plt
#%% define spatial and temporal grids
l_square = 1  # length of square
h = l_square / 10  # grid spacing
dt = 10  # time step
L = 35  # domain length
D = 21  # domain depth
Nx = round(L / h) + 1  # grid points in x-axis
Ny = round(D / h) + 1  # grid points in y-axis
nu = 0.000015111  # kinematic viscosity
Uinf = 0.0015111  # free stream velocity / inlet velocity / lid velocity
cfl = dt * Uinf / h  # cfl number
travel = 10 # times the disturbance travels entire length of computational domain
TT = travel * L / Uinf  # total time
ns = int(TT / dt)  # number of time steps
Re = round(l_square * Uinf / nu) # Reynolds number
rho = 1.2047  # fluid density
#%% initialize flowfield
u = Uinf * np.ones((Nx, Ny))  # x-velocity
v = np.zeros((Nx, Ny))  # y-velocity
p = np.zeros((Nx, Ny))  # pressure
X, Y = np.meshgrid(np.linspace(0, L, Nx), np.linspace(0, D, Ny))  # spatial grid
#%% Solve 2D Navier-Stokes equations
for nt in range(ns):
    pn = p.copy()
    p[1:-1, 1:-1] = (pn[2:, 1:-1] + pn[:-2, 1:-1] + pn[1:-1, 2:] + pn[1:-1, :-2]) / 4 - h * rho / (8 * dt) * (u[2:, 1:-1] - u[:-2, 1:-1] + v[1:-1, 2:] - v[1:-1, :-2]) # pressure
    # boundary conditions for pressure
    p[0, :] = p[1, :]  # dp/dx = 0 at x = 0
    p[-1, :] = 0  # p = 0 at x = L
    p[:, 0] = p[:, 1]  # dp/dy = 0 at y = 0
    p[:, -1] = p[:, -2]  # dp/dy = 0 at y = D
    p[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box geometry
    p[round(10 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = p[round(10 * Nx / L) - 1, round(10 * Ny / D):round(11 * Ny / D)] # box left
    p[round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = p[round(11 * Nx / L) + 1, round(10 * Ny / D):round(11 * Ny / D)] # box right
    p[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D)] = p[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D) - 1] # box bottom
    p[round(10 * Nx / L):round(11 * Nx / L), round(11 * Ny / D)] = p[round(10 * Nx / L):round(11 * Nx / L), round(11 * Ny / D) + 1] # box top
    un = u.copy()
    vn = v.copy()
    u[1:-1, 1:-1] = (un[1:-1, 1:-1] - dt / (2 * h) * (un[1:-1, 1:-1] * (un[2:, 1:-1] - un[:-2, 1:-1]) + vn[1:-1, 1:-1] * (un[1:-1, 2:] - un[1:-1, :-2])) - dt / (2 * rho * h) * (p[2:, 1:-1] - p[:-2, 1:-1]) + nu * dt / h**2 * (un[2:, 1:-1] + un[:-2, 1:-1] + un[1:-1, 2:] + un[1:-1, :-2] - 4 * un[1:-1, 1:-1])) # x momentum
    # boundary conditions for x-velocity
    u[0, :] = Uinf  # u = Uinf at x = L
    u[-1, :] = u[-2, :]  # du/dx = 0 at x = L
    u[:, 0] = Uinf  # u = 0 at y = 0
    u[:, -1] = Uinf  # u = 0 at y = D
    u[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box geometry
    u[round(10 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box left
    u[round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box right
    u[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D)] = 0 # box bottom
    u[round(11 * Nx / L):round(11 * Nx / L), round(11 * Ny / D)] = 0 # box top
    v[1:-1, 1:-1] = (vn[1:-1, 1:-1] - dt / (2 * h) * (un[1:-1, 1:-1] * (vn[2:, 1:-1] - vn[:-2, 1:-1]) + vn[1:-1, 1:-1] * (vn[1:-1, 2:] - vn[1:-1, :-2])) - dt / (2 * rho * h) * (p[1:-1, 2:] - p[1:-1, :-2]) + nu * dt / h**2 * (vn[2:, 1:-1] + vn[:-2, 1:-1] + vn[1:-1, 2:] + vn[1:-1, :-2] - 4 * vn[1:-1, 1:-1])) # y momentum
    # boundary conditions for y-velocity
    v[0, :] = 0  # v = 0 at x = L
    v[-1, :] = v[-2, :]  # dv/dx = 0 at x = L
    v[:, 0] = 0  # v = 0 at y = 0
    v[:, -1] = 0  # v = 0 at y = D
    v[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box geometry
    v[round(10 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box left
    v[round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box right
    v[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D)] = 0 # box bottom
    v[round(11 * Nx / L):round(11 * Nx / L), round(11 * Ny / D)] = 0 # box top
#%% post-processing
velocity_magnitude = np.sqrt(u**2 + v**2)  # velocity magnitude
u1 = u.copy()  # u-velocity for plotting with box
v1 = v.copy()  # v-velocity for plotting with box
p1 = p.copy()  # p-velocity for plotting with box
# box geometry for plotting
u1[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = np.nan
v1[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)]  = np.nan
p1[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)]  = np.nan
velocity_magnitude1 = np.sqrt(u1**2 + v1**2)  # velocity magnitude with box
# visualize velocity vectors and pressure contours
plt.figure(dpi = 500)
plt.contourf(X, Y, u1.T, 128, cmap = 'hsv')
# plt.colorbar()
plt.gca().set_aspect('equal', adjustable='box')
plt.xticks([0, L])
plt.yticks([0, D])
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.show()
plt.figure(dpi = 500)
plt.contourf(X, Y, v1.T, 128, cmap = 'turbo')
# plt.colorbar()
plt.gca().set_aspect('equal', adjustable='box')
plt.xticks([0, L])
plt.yticks([0, D])
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.show()
plt.figure(dpi = 500)
plt.contourf(X, Y, p1.T, 128, cmap = 'jet')
# plt.colorbar()
plt.gca().set_aspect('equal', adjustable='box')
plt.xticks([0, L])
plt.yticks([0, D])
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.show()

References

[1] Khademinejad, Taha & Talebizadeh Sardari, Pouyan & Rahimzadeh, Hassan. (2015). Numerical Study of Unsteady Flow around a Square Cylinder in Compare with Circular Cylinder.
[2] Sohankar, A., Norbergb, C., Davidson, L., Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence, Journal of Wind Engineering and Industrial Aerodynamics, 69–71 (1997) 189-201.
[3] Cheng, M., Whyte, D. S., Lou, J., Numerical simulation of flow around a square cylinder in uniform-shear flow, Journal of Fluids and Structures, 23 (2007) 207–226.
[4] Lam, K., Lin, Y. F., L. Zou, Y. Liu, Numerical study of flow patterns and force characteristics for square and rectangular cylinders with wavy surfaces, Journal of Fluids and Structures, 28 (2012) 359–377.

Sunday, 31 March 2024

13th Step of the 12 steps to Navier-Stokes 😑

     Indeed, the 13th step now exists! This case is called the case of the backward facing step (BFS)! ⬜ This is an unofficial continuation to this. If I get it approved by Dr. Barba, then it will be official. The original series is in Python but I coded this in MATLAB without using many MATLAB specific functions so the code can be translated to other programing languages 🖧 quite easily.

The Code

%% clear and close
close all
clear
clc
%% define spatial and temporal grids
l_square = 1; % length of square
h = l_square/50; % grid spacing
dt = 0.1; % time step
L = 21; % cavity length
D = 2; % cavity depth
Nx = round((L/h)+1); % grid points in x-axis
Ny = round((D/h)+1); % grid points in y-axis
nu = 0.000015111; % kinematic viscosity
Uinf = 0.0060444; % free stream velocity / inlet velocity / lid velocity
cfl = dt*Uinf/h; % % cfl number
travel = 4; % times the disturbance travels entire length of computational domain
TT = travel*L/Uinf; % total time
ns = TT/dt; % number of time steps
Re = l_square*Uinf/nu; % Reynolds number
rho = 1.2047; % fluid density
%% initialize flowfield
u = zeros(Nx,Ny); % x-velocity
v = zeros(Nx,Ny); % y-velocity
p = zeros(Nx,Ny); % pressure
i = 2:Nx-1; % spatial interior nodes in x-axis
j = 2:Ny-1; % spatial interior nodes in y-axis
[X, Y] = meshgrid(0:h:L, 0:h:D); % spatial grid
maxNumCompThreads('automatic'); % select CPU cores
%% solve 2D Navier-Stokes equations
for nt = 1:ns
pn = p;
p(i, j) = (pn(i+1, j)+pn(i-1, j)+pn(i, j+1)+pn(i, j-1))/4 ...
-h*rho/(8*dt)*(u(i+1, j)-u(i-1, j)+v(i, j+1)-v(i, j-1)); % pressure poisson
p(1, :) = p(2, :); % dp/dx = 0 at x = 0
p(Nx, :) = 0; % p = 0 at x = L
p(:, 1) = p(:, 2); % dp/dy = 0 at y = 0
p(:, Ny) = p(:, Ny-1); % dp/dy = 0 at y = D
p(round(1:1*Nx/L), round(1:1*Ny/D)) = 0; % step geometry
p(round(1*Nx/L), round(1:1*Ny/D)) = p(round(1*Nx/L)+1, round(1:1*Ny/D)); % dp/dx = 0 at x = 1 and y = 0 to 1
p(1:round(1*Nx/L), round(1*Ny/D)) = p(1:round(1*Nx/L), round(1*Ny/D)+1); % dp/dy = 0 at x = 0 to 1 and y = 1
p(1:round(1*Nx/L), 1) = p(1:round(1*Nx/L), 2); % dp/dy = 0 at x = 0 to 1 and y = 1
un = u;
vn = v;
u(i, j) = un(i, j)-dt/(2 * h)*(un(i, j).*(un(i+1, j)-un(i-1, j))+vn(i, j).*(un(i, j+1)-un(i, j-1))) ...
-dt/(2*rho*h)*(p(i+1, j)-p(i-1, j)) ...
+nu*dt/h^2*(un(i+1, j)+un(i-1, j)+un(i, j+1)+un(i, j-1)-4*un(i, j)); % x-momentum
u(round(1:1*Nx/L), round(1:1*Ny/D)) = 0; % step geometry
u(1, round(1:1*Ny/D)) = 0; % u = 0 at x = 0 and y = 0 to 1
u(1, round(1*Ny/D:2*Ny/D)) = Uinf; % u = Uinf at x = 0 and y = 1 to 2
u(round(1*Nx/L), round(1:1*Ny/D)) = 0; % u = 0 at x = 1 and y = 0 to 1
u(1:round(1*Nx/L), round(1*Ny/D)) = 0; % u = 0 at x = 0 to 1 and y = 1
u(1:round(1*Nx/L), 1) = 0; % u = 0 at x = 0 to 1 and y = 1
u(Nx, :) = u(Nx-1, :); % du/dx = 0 at x = L
u(:, 1) = 0; % u = 0 at y = 0
u(:, Ny) = 0; % u = 0 at y = D
v(i, j) = vn(i, j)-dt/(2*h)*(un(i, j).*(vn(i+1, j)-vn(i-1, j))+vn(i, j).*(vn(i, j+1)-vn(i, j-1))) ...
-dt/(2*rho*h)*(p(i, j+1)-p(i, j-1)) ...
+ nu*dt/h^2*(vn(i+1, j)+vn(i-1, j)+vn(i, j+1)+vn(i, j-1)-4*vn(i, j)); % y-momentum
v(round(1:1*Nx/L), round(1:1*Ny/D)) = 0; % step geometry
v(1, round(1:1*Ny/D)) = 0; % v = 0 at x = 0 and y = 0 to 1
v(1, round(1*Ny/D:2*Ny/D)) = 0; % v = Uinf at x = 0 and y = 1 to 2
v(round(1*Nx/L), round(1:1*Ny/D)) = 0; % v = 0 at x = 1 and y = 0 to 1
v(1:round(1*Nx/L), round(1*Ny/D)) = 0; % v = 0 at x = 0 to 1 and y = 1
v(1:round(1*Nx/L), 1) = 0; % v = 0 at x = 0 to 1 and y = 1
v(Nx, :) = v(Nx-1, :); % dv/dx = 0 at x = L
v(:, 1) = 0; % u = 0 at y = 0
v(:, Ny) = 0; % u = 0 at y = D
end
%% post-processing
velocity_magnitude = sqrt(u.^2 + v.^2); % velocity magnitude
u1 = u; % u-velocity for plotting with box
v1 = v; % v-velocity for plotting with box
p1 = p; % p-velocity for plotting with box
u1(1:round(1*Nx/L) , 1:round(1*Ny/D)) = NaN; % step geometry
v1(1:round(1*Nx/L) , 1:round(1*Ny/D)) = NaN; % step geometry
p1(1:round(1*Nx/L) , 1:round(1*Ny/D)) = NaN; % step geometry
velocity_magnitude1 = sqrt(u1.^2 + v1.^2); % velocity magnitude with box
%% Visualize velocity vectors and pressure contours
hold on
contourf(X, Y, u1', 64, 'LineColor', 'none'); % contour plot
set(gca, 'FontSize', 20)
% skip = 20;
% quiver(X(1:skip:end, 1:skip:end), Y(1:skip:end, 1:skip:end),...
% u1(1:skip:end, 1:skip:end)', v1(1:skip:end, 1:skip:end)', 1, 'k','LineWidth', 0.1); % Velocity vectors
% hh = streamslice(X, Y, u1', v1',2); % Streamlines
% set(hh, 'Color', 'k','LineWidth', 01);
colorbar; % Add color bar
colormap parula % Set color map
axis equal % Set true scale
xlim([0 L]); % Set axis limits
ylim([0 D]);
xticks([0 9 L]) % Set ticks
yticks([0 D]) % Set ticks
xt = [0 21]; % draw top wall
yt = [2 2];
xb = [1 21]; % draw bottom wall
yb = [0 0];
xbox = [0 1 1 0 0]; % draw box
ybox = [0 0 1 1 0];
plot(xbox, ybox, 'k', 'LineWidth', 2)
plot(xt, yt, 'k', 'LineWidth', 2)
plot(xb, yb, 'k', 'LineWidth', 2)
% clim([0 max(velocity_magnitude(:))]) % legend limits
% title('Velocity [m/s]');
xlabel('x [m]');
ylabel('y [m]');

     The results from this code at Re 400 are presented in Fig. 1. The re-attachment length is ~8 m from the trailing-edge of the box, which is same as previously published results, from example in [1].

Fig. 1, post-processes results

     Thank you for reading! If you want to hire me as your next PhD student, please do reach out!

References

 [1] Irisarri, D., Hauke, G. Stabilized virtual element methods for the unsteady incompressible Navier–Stokes equations. Calcolo 56, 38 (2019). https://doi.org/10.1007/s10092-019-0332-5