In abundant spare time ⏳, yours truly has implemented the non-conservative and non-dimensional form of the discretized Navier-Stokes 🍃 equations. The code 🖳 in it's simplest form is less than 50 lines including importing libraries and plotting! 😲 For validation, refer here. More examples and free code is available here, here and here. Happy codding!
Code
# Copyright <2024> <FAHAD BUTT>
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import numpy as np
import matplotlib.pyplot as plt
l_square = 1 # length of square
h = l_square / 50 # grid spacing
dt = 0.001 # time step
L = 1 # domain length
D = 1 # domain depth
Nx = round(L / h) + 1 # grid points in x-axis
Ny = round(D / h) + 1 # grid points in y-axis
nu = 1 / 100 # kinematic viscosity
Uinf = 1 # free stream velocity / inlet velocity / lid velocity
cfl = dt * Uinf / h # cfl number
travel = 20 # times the disturbance travels entire length of computational domain
TT = travel * L / Uinf # total time
ns = int(TT / dt) # number of time steps
Re = round(l_square * Uinf / nu) # Reynolds number
u = np.zeros((Nx, Ny)) # x-velocity
v = np.zeros((Nx, Ny)) # y-velocity
p = np.zeros((Nx, Ny)) # pressure
for nt in range(ns): # solve 2D Navier-Stokes equations
pn = p.copy()
p[1:-1, 1:-1] = (pn[2:, 1:-1] + pn[:-2, 1:-1] + pn[1:-1, 2:] + pn[1:-1, :-2]) / 4 - h / (8 * dt) * (u[2:, 1:-1] - u[:-2, 1:-1] + v[1:-1, 2:] - v[1:-1, :-2]) # pressure
p[0, :] = p[1, :] # dp/dx = 0 at x = 0
p[-1, :] = p[-2, :] # dp/dx = 0 at x = L
p[:, 0] = p[:, 1] # dp/dy = 0 at y = 0
p[:, -1] = 0 # p = 0 at y = D
un = u.copy()
vn = v.copy()
u[1:-1, 1:-1] = (un[1:-1, 1:-1] - dt / (2 * h) * (un[1:-1, 1:-1] * (un[2:, 1:-1] - un[:-2, 1:-1]) + vn[1:-1, 1:-1] * (un[1:-1, 2:] - un[1:-1, :-2])) - dt / (2 * h) * (p[2:, 1:-1] - p[:-2, 1:-1]) + (1 / Re) * dt / h**2 * (un[2:, 1:-1] + un[:-2, 1:-1] + un[1:-1, 2:] + un[1:-1, :-2] - 4 * un[1:-1, 1:-1])) # x momentum
u[0, :] = 0 # u = 0 at x = 0
u[-1, :] = 0 # u = 0 at x = L
u[:, 0] = 0 # u = 0 at y = 0
u[:, -1] = Uinf # u = Uinf at y = D
v[1:-1, 1:-1] = (vn[1:-1, 1:-1] - dt / (2 * h) * (un[1:-1, 1:-1] * (vn[2:, 1:-1] - vn[:-2, 1:-1]) + vn[1:-1, 1:-1] * (vn[1:-1, 2:] - vn[1:-1, :-2])) - dt / (2 * h) * (p[1:-1, 2:] - p[1:-1, :-2]) + (1 / Re) * dt / h**2 * (vn[2:, 1:-1] + vn[:-2, 1:-1] + vn[1:-1, 2:] + vn[1:-1, :-2] - 4 * vn[1:-1, 1:-1])) # y momentum
v[0, :] = 0 # v = 0 at x = 0
v[-1, :] = 0 # v = 0 at x = L
v[:, 0] = 0 # v = 0 at y = 0
v[:, -1] = 0 # v = 0 at y = D
X, Y = np.meshgrid(np.linspace(0, L, Nx), np.linspace(0, D, Ny)) # spatial grid
plt.figure(dpi = 200)
plt.contourf(X, Y, v.T, 128, cmap = 'jet') # plot contours
plt.colorbar()
plt.streamplot(X, Y, u.T, v.T, color = 'black', cmap = 'jet', density = 2, linewidth = 0.5, arrowstyle='->', arrowsize = 1) # plot streamlines
plt.gca().set_aspect('equal', adjustable='box')
plt.xticks([0, L])
plt.yticks([0, D])
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.show()
Thank you for reading! If you want to hire me as your next shinning post-doc, do let reach out!