Sunday, 5 January 2025

16th Step of the 12 steps to Navier-Stokes 😑

      FOANSS, i.e. Fadoobaba's Open Advanced Navier-Stokes 🌬 Solver is now capable to simulate flow with species with / without obstacles of course 🤓. In this example, the species is temperature. Gravity is not considered so the momentum equations are unchanged from Step 14. The non dimensional version of energy equation has been used. Mach number term is removed as Reynolds number is very low 😱. These blog posts are written for educational purposes, hence the over simplifications! A remainder that you are reading a blog, not a Q1 journal 😃.

     The simulated case is called the case of flow around an obstacle. Like a heat sink fin ⬜. The fin / box is heated in the example shown in Fig. 1. For validation, read hereThis code and blog post is not endorsed or approved by Dr. Barba, I just continue the open-source work of her. The 13th and 15th Steps are available for reading along with code.

Fig. 1, Temperature contours with streamlines


Code

# Copyright <2024> <FAHAD BUTT>

# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#%% import libraries

import numpy as np

import matplotlib.pyplot as plt

#%% define spatial and temporal grids

l_square = 1 # length of square

h = l_square / 50 # grid spacing

dt = 0.002 # time step

L = 35 # domain length

D = 21 # domain depth

Nx = round(L / h) + 1 # grid points in x-axis

Ny = round(D / h) + 1 # grid points in y-axis

nu = 1 / 100 # kinematic viscosity

Uinf = 1 # free stream velocity / inlet velocity / lid velocity

cfl = dt * Uinf / h # cfl number

travel = 2 # times the disturbance travels entire length of computational domain

TT = travel * L / Uinf # total time

ns = int(TT / dt) # number of time steps

Re = round(l_square * Uinf / nu) # Reynolds number

Pr = 0.7 # Prandtl number

rho = 1 # fluid density

#%% initialize flowfield

u = Uinf * np.ones((Nx, Ny)) # x-velocity

v = np.zeros((Nx, Ny)) # y-velocity

p = np.zeros((Nx, Ny)) # pressure

T = np.ones((Nx, Ny)) # temperature

X, Y = np.meshgrid(np.linspace(0, L, Nx), np.linspace(0, D, Ny)) # spatial grid

#%% solve 2D Navier-Stokes equations

for nt in range(ns):

    pn = p.copy()

    p[1:-1, 1:-1] = (pn[2:, 1:-1] + pn[:-2, 1:-1] + pn[1:-1, 2:] + pn[1:-1, :-2]) / 4 - h * rho / (8 * dt) * (u[2:, 1:-1] - u[:-2, 1:-1] + v[1:-1, 2:] - v[1:-1, :-2]) # pressure

    # boundary conditions for pressure

    p[0, :] = p[1, :] # dp/dx = 0 at x = 0

    p[-1, :] = 0 # p = 0 at x = L

    p[:, 0] = p[:, 1] # dp/dy = 0 at y = 0

    p[:, -1] = p[:, -2] # dp/dy = 0 at y = D

    p[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box geometry

    p[round(10 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = p[round(10 * Nx / L) - 1, round(10 * Ny / D):round(11 * Ny / D)] # box left

    p[round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = p[round(11 * Nx / L) + 1, round(10 * Ny / D):round(11 * Ny / D)] # box right

    p[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D)] = p[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D) - 1] # box bottom

    p[round(10 * Nx / L):round(11 * Nx / L), round(11 * Ny / D)] = p[round(10 * Nx / L):round(11 * Nx / L), round(11 * Ny / D) + 1] # box top

    un = u.copy()

    vn = v.copy()

    u[1:-1, 1:-1] = (un[1:-1, 1:-1] - dt / (2 * h) * (un[1:-1, 1:-1] * (un[2:, 1:-1] - un[:-2, 1:-1]) + vn[1:-1, 1:-1] * (un[1:-1, 2:] - un[1:-1, :-2])) - dt / (2 * rho * h) * (p[2:, 1:-1] - p[:-2, 1:-1]) + nu * dt / h**2 * (un[2:, 1:-1] + un[:-2, 1:-1] + un[1:-1, 2:] + un[1:-1, :-2] - 4 * un[1:-1, 1:-1])) # x momentum

    # boundary conditions for x-velocity

    u[0, :] = Uinf # u = Uinf at x = 0

    u[-1, :] = u[-2, :] # du/dx = 0 at x = L

    u[:, 0] = Uinf # u = 0 at y = 0

    u[:, -1] = Uinf # u = 0 at y = D

    u[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box geometry

    u[round(10 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box left

    u[round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box right

    u[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D)] = 0 # box bottom

    u[round(11 * Nx / L):round(11 * Nx / L), round(11 * Ny / D)] = 0 # box top

    v[1:-1, 1:-1] = (vn[1:-1, 1:-1] - dt / (2 * h) * (un[1:-1, 1:-1] * (vn[2:, 1:-1] - vn[:-2, 1:-1]) + vn[1:-1, 1:-1] * (vn[1:-1, 2:] - vn[1:-1, :-2])) - dt / (2 * rho * h) * (p[1:-1, 2:] - p[1:-1, :-2]) + nu * dt / h**2 * (vn[2:, 1:-1] + vn[:-2, 1:-1] + vn[1:-1, 2:] + vn[1:-1, :-2] - 4 * vn[1:-1, 1:-1])) # y momentum

    # boundary conditions for y-velocity

    v[0, :] = 0 # v = 0 at x = 0

    v[-1, :] = v[-2, :] # dv/dx = 0 at x = L

    v[:, 0] = 0 # v = 0 at y = 0

    v[:, -1] = 0 # v = 0 at y = D

    v[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box geometry

    v[round(10 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box left

    v[round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box right

    v[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D)] = 0 # box bottom

    v[round(11 * Nx / L):round(11 * Nx / L), round(11 * Ny / D)] = 0 # box top

    Tn = T.copy()

    T[1:-1, 1:-1] = Tn[1:-1, 1:-1] - (dt / (2 * h)) * (u[1:-1, 1:-1] * (Tn[2:, 1:-1] - Tn[:-2, 1:-1]) + v[1:-1, 1:-1] * (Tn[1:-1, 2:] - Tn[1:-1, :-2])) + (dt / (h**2 * Re * Pr)) * ((Tn[2:, 1:-1] - 2 * Tn[1:-1, 1:-1] + Tn[:-2, 1:-1]) + (Tn[1:-1, 2:] - 2 * Tn[1:-1, 1:-1] + Tn[1:-1, :-2])) # energy

    T[0, :] = 1 # T = 0 at x = 0

    T[-1, :] = T[-2, :] # dT/dx = 0 at x = L

    T[:, 0] = 1 # T = 0 at y = 0

    T[:, -1] = 1 # T = 0 at y = D

    T[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box geometry

    T[round(10 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box left

    T[round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = 0 # box right

    T[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D)] = 0 # box bottom

    T[round(11 * Nx / L):round(11 * Nx / L), round(11 * Ny / D)] = 0 # box top

#%% post-processing

velocity_magnitude = np.sqrt(u**2 + v**2)  # velocity magnitude

u1 = u.copy() # u-velocity for plotting with box

v1 = v.copy() # v-velocity for plotting with box

p1 = p.copy() # pressure for plotting with box

T1 = T.copy() # temperature for plotting with box

# box geometry for plotting

u1[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)] = np.nan

v1[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)]  = np.nan

p1[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)]  = np.nan

T1[round(10 * Nx / L):round(11 * Nx / L), round(10 * Ny / D):round(11 * Ny / D)]  = np.nan

velocity_magnitude1 = np.sqrt(u1**2 + v1**2) # velocity magnitude with box

# visualize velocity vectors and pressure contours

plt.figure(dpi = 500)

plt.contourf(X, Y, u1.T, 128, cmap = 'hsv')

# plt.colorbar()

plt.gca().set_aspect('equal', adjustable='box')

plt.xticks([0, L])

plt.yticks([0, D])

plt.xlabel('x [m]')

plt.ylabel('y [m]')

plt.show()

plt.figure(dpi = 500)

plt.contourf(X, Y, v1.T, 128, cmap = 'turbo')

# plt.colorbar()

plt.gca().set_aspect('equal', adjustable='box')

plt.xticks([0, L])

plt.yticks([0, D])

plt.xlabel('x [m]')

plt.ylabel('y [m]')

plt.show()

plt.figure(dpi = 500)

plt.contourf(X, Y, p1.T, 128, cmap = 'gist_rainbow')

# plt.colorbar()

plt.gca().set_aspect('equal', adjustable='box')

plt.xticks([0, L])

plt.yticks([0, D])

plt.xlabel('x [m]')

plt.ylabel('y [m]')

plt.show()

plt.figure(dpi = 500)

plt.contourf(X, Y, T1.T, 128, cmap = 'jet')

# plt.colorbar()

plt.gca().set_aspect('equal', adjustable='box')

plt.xticks([0, L])

plt.yticks([0, D])

plt.xlabel('x [m]')

plt.ylabel('y [m]')

plt.show()

plt.figure(dpi = 500)

plt.streamplot(X, Y, u1.T, v1.T, color = 'black', cmap = 'jet', density = 2, linewidth = 0.5,\

                    arrowstyle='->', arrowsize = 1)  # plot streamlines

plt.gca().set_aspect('equal', adjustable = 'box')

plt.axis('off')

plt.show()

     Thank you very much for reading! If you want to hire me as your new shinning post-doc or want to collaborate on the research, please reach out!