Showing posts with label DARPA. Show all posts
Showing posts with label DARPA. Show all posts

Saturday 10 September 2022

DARPA Suboff Submarine CFD Simulation (Backed-up by Water Tunnel Data); Update 01: Water Level Simulations (Volume of Fluid)

      This post is about the CFD analysis of the DARPA Suboff at various speeds. The DARPA Suboff model is based on a generic submarine. The submarine geometry is shown in Fig. 1. The submarine in fully submerged in water. Refer to section "Update 01" for submarine sailing at the water level. The submarine geometry is available here. The geometry is made using equations from [1]. Machine Learning available here.


Fig. 1, DARPA Suboff submarine CAD

      The simulations are validated with published literature [2-4]. SolidWorks Flow Simulation Premium software is employed for the simulations. Fig. 2 shows results of drag force at various cruise speeds. It can be seen that the results are in close agreement with the published experimental / numerical data.

Fig. 2, Comparison of results

     The mesh has 656,714 cells in total. With 34,258 cells on the submarine surface. Special mesh refinements are added in the regions of interest i.e. regions with high gradients, the wake and on the control surfaces of the submarine. The mesh for is shown in Fig. 3.


Fig. 3, The mesh and computational domain

     The results from the CFD post processing are presented next. Velocity cut-plots showing velocity distribution and wake of the submarine, surface pressure distribution on the submarine and vorticity around and in the wake of the submarine are also shown in Fig. 4. Within Fig. 4, the black arrows represent the direction of on coming flow.

Fig. 4, The post processing

     Thank you for reading, If you would like to collaborate on projects, please reach out.

Update 01

     This section presents the results from a simulation using volume of fluid method. The water line is just below the sail of the submarine, as shown in Fig. 5. The iso-surfaces are shown in Fig. 6. The black arrows in both Figs. 5-6 represent direction of on coming flow. These simulations allow for visualization of wake of submarines and then methods can be device to reduce the wake.

Fig. 5, The color blue represents water and white represents air

Fig. 6, 3D wake of a sailing submarine

References

[1] Groves, Nancy C. Huang, Thomas T. Chang, Ming S., "Geometric Characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF Models (DTRC Model Numbers 5470 and 5471)",  David Taylor Research Center, Bethesda MD, Ship Hydromechanics Dept, ADA210642, 1989 https://apps.dtic.mil/sti/citations/ADA210642
[2] Yu-Hsien Lin and Xian-Chen Li, "The Investigation of a Sliding Mesh Model for Hydrodynamic Analysis of a SUBOFF Model in Turbulent Flow Fields", Journal of Marine Science and Engineering, 8(10), 744, https://doi.org/10.3390/jmse8100744
[3] Liu, H.-L.; Huang, T.T. Summary of DARPA SUBOFF Experimental Program Data; Naval Surface Warfare Center Carderock Division, Hydromechanics Directorate: West Bethesda, MD, USA, 1998.
[4] Özden, Y.A.; Özden, M.C.; Çelik, F. Numerical Investigation of Submarine Tail Form on the Hull Eciency. In Proceedings of the Fifth International Symposium on Marine Propulsors, Espoo, Finland, 12–15 June 2017