Sunday 17 November 2019

Flying Wing Design using Computational Fluid Dynamics (Verification and Validation)

     This post is about a transient simulation of the ONERA M-6 flying-wing aircraft with a cross-section of ONERA D airfoil, as shown in Fig. 1.

Fig. 1, The simulated geometry. 

     The mesh had 2,474,614 cells in total with 300,892 cells on the wing surface, as shown in Fig. 2. The computational domain is shown in Fig. 4. The computational domain walls are at a distance equal to ten times the wingspan.

Fig. 2, The computational mesh.

Fig. 3, The computational domain.

     The simulated conditions are taken from [1-4] i.e. a freestream Mach number of 0.8395 at 101,325 Pa and 293.2 K. The angle of attack is 3.06°.

     The lift force from the present numerical simulation is at 19,551.65 N as compared to the lift force of 20,438.53 N as determined by [1-4]. The numerically determined drag force from present simulation is 1,370.88 N as compared to 1,313.24 N, as determined by [1-4].

     The results of lift and drag force from the present simulation are within 4.35% and 4.2% of the results calculated by NASA [4] and [1-3]. Streamlines and pressure surface plot around the aircraft surface are shown in Fig. 4.




Fig. 4, Results.


References

[1] Le Moigne, "A Discrete Navier-Stokes Adjoint Method for Aerodynamic Optimization of Blended Wing-Body, Configurations", PhD thesis, Cranfield University, United Kingdom, 2002.
[2] J. Lee, C. S. Kim, C. Kim, O. H. Rho, and K. D. Lee, "Parallelized Design Optimization for Transonic Wings using Aerodynamic Sensitivity Analysis", AIAA Paper 2002-0264, 2002.
[3] E. J. Neilsen and W. K. Anderson, "Recent Improvements in Aerodynamic Design Optimization on Unstructured Meshes", AIAA Paper 2001-0596, 2001.
[4] 3D ONERA M6 Wing Validation, https://turbmodels.larc.nasa.gov/onerawingnumerics_val_sa.html.

     Thank you for reading. If you would like to collaborate on research projects, please reach out.