Tuesday 30 August 2022

SACCON CFD Simulation (Compared by Wind Tunnel Data)

     This post is about the CFD analysis of the SACCON UCAV. Designed by NATO’s (North Atlantic Treaty Organization) RTO (Research and Technology Group) under Applied Vehicle Task Group (AVT-161) to assess the performance of military aircraft. The aircraft Geometry is shown in Fig. 1. The aircraft geometry is available here [1].


Fig. 1, SACCON UCAV

The aircraft flight parameters and dimensions are given in [1]. The simulations are validated with published literature [1]. SolidWorks Flow Simulation Premium software is employed for the simulations. Fig. 2 shows results of Cl, Cd and Cm at various angles of attack. It can be seen that the results are agreement with the published experimental data.
Fig. 2, Comparison of simulation results

The mesh has 3.7 million cells in total. Special mesh refinements are added in the regions of interest i.e. regions with high gradients, the wake and on the control surfaces of the aircraft. The computational domain and the mesh for 16° angle of attack is shown in Fig. 3.

Fig. 3, The computational mesh and domain

The mesh has 3.7 million cells in total. Special mesh refinements are added in the regions of interest i.e. regions with high gradients, the wake and on the control surfaces of the aircraft. The computational domain and the mesh for 16° angle of attack is shown in Fig. 3.

Fig. 4, CFD post processing

Thank you for reading, If you would like to collaborate on projects, please reach out.

References

[1] Andreas Schütte, Dietrich Hummel and Stephan M. Hitzel, “Flow Physics Analyses of a Generic Unmanned Combat Aerial Vehicle Configuration,” Journal of Aircraft, Vol. 49, No. 6, December 2012, https://doi.org/10.2514/1.C031386