Thursday, 12 October 2023

Saithe Fish UDF (ANSYS Fluent)

     This post is about Fish Simulation in ANSYS Fluent using a User Defined Function (UDF). The UDF is mentioned below. The flow conditions are taken from [1]. This goes with the videos shown in Fig. 1-2. The CAD files for t=0 are available here (for UDF 01).

Fig. 1, Animation of motion achieved through the UDF 01.

 
 Fig. 2, Animation of motion achieved through the UDF 02 (Validated).

     The results of present simulations are compared with [1]. The results are in excellent agreement as the Cl, max from [1] is at 1.57 while the maximum Cl, max from present simulation is at 1.6. The drag coefficient [1], Cd, max in [1] is at 0.164; while from the present simulations I got, 0.151. The Cd, avg comes out to be 0.072 [1] form the present simulations. I got a value of 0.064 from he present simulation. These would gradually become more accurate with mesh refinement, which I will certainly do if I send some ideas I have for peer review.

UDF 01:

#include "udf.h"
#include "unsteady.h"
#include "dynamesh_tools.h"
#include "math.h"


DEFINE_GRID_MOTION(dynamic,domain,dt,time,dtime)
{
 Thread *tf = DT_THREAD(dt);
 face_t f;
 Node *v;
 int n;
 double x, y, y_ref_previous, y_ref;
 SET_DEFORMING_THREAD_FLAG(THREAD_T0(tf));  
 begin_f_loop(f,tf) {
  f_node_loop(f,tf,n) {
   v = F_NODE(f,tf,n);
   if (NODE_POS_NEED_UPDATE(v)) {
    NODE_POS_UPDATED(v);
    x = NODE_X(v);
    real amplitude = 0.02 + 0.01*x + 0.1*x*x;
    y_ref_previous = amplitude * cos(2*M_PI*x + 2*M_PI*0.8*(PREVIOUS_TIME));
    y_ref = amplitude * cos(2*M_PI*x + 2*M_PI*0.8*(CURRENT_TIME));
     
if (NODE_Y(v) > y_ref_previous){
     NODE_Y(v) = y_ref+fabs(NODE_Y(v)-y_ref_previous);
    }
    else 
     if (NODE_Y(v) < y_ref_previous){
      NODE_Y(v) = y_ref-fabs(NODE_Y(v)-y_ref_previous);
     }
     else {
      NODE_Y(v) = y_ref;
     }
    }
   }
  }
 }
 end_f_loop(f,tf);

UDF 02 (Validated):

#include "udf.h"

DEFINE_GRID_MOTION(dynamic,domain,dt,time,dtime)
{
 Thread *tf = DT_THREAD(dt);
 face_t f;
 Node *v;
 int n;
 double x, y_ref_previous, y_ref, amplitude, fr;
 SET_DEFORMING_THREAD_FLAG(THREAD_T0(tf));  
 begin_f_loop(f,tf) {
  f_node_loop(f,tf,n) {
   v = F_NODE(f,tf,n);
   if (NODE_POS_NEED_UPDATE(v)) {
    NODE_POS_UPDATED(v);
    x = fabs(NODE_X(v));
    amplitude = 0.02 - 0.0825 * x + 0.1625 * x * x;
    fr = 2;
    y_ref_previous = amplitude * cos(2 * M_PI * x - 2 * M_PI * fr * (PREVIOUS_TIME));
    y_ref = amplitude * cos(2 * M_PI * x - 2 * M_PI * fr * (CURRENT_TIME));
     
if (NODE_Y(v) > y_ref_previous){
     NODE_Y(v) = y_ref + fabs(NODE_Y(v) - y_ref_previous);
    }
    else 
     if (NODE_Y(v) < y_ref_previous){
      NODE_Y(v) = y_ref - fabs(NODE_Y(v) - y_ref_previous);
     }
     else {
      NODE_Y(v) = y_ref;
     }
    }
   }
  }
 }
 end_f_loop(f,tf);

If you want to hire me as you next shining PhD/Master student or collaborate in research, please reach out! Thank you for reading!

References

[1] Gen-Jin Dong, Xi-Yun Lu; Characteristics of flow over traveling wavy foils in a side-by-side arrangement. Physics of Fluids 1 May 2007; 19 (5): 057107. https://doi.org/10.1063/1.2736083

Thursday, 21 September 2023

Lid-Driven Cavity MATLAB Code

     MATLAB code for 2D Lid-Driven Cavity. Includes labeled commands, plotting and is less than 100 lines of code. Resume possible, to resume comment close all, clear, clc, u, v, p and then run the code. Results are available here:


%% clear and close

close all

clear

clc


%% define spatial and temporal grids

h = 1/10; % grid spacing

cfl = h; % cfl number

L = 1; % cavity length

D = 1; % cavity depth

Nx = round((L/h)+1); % grid points in x-axis

Ny = round((D/h)+1); % grid points in y-axis

nu = 0.000015111; % kinematic viscosity

Uinf = 0.0015111; % free stream velocity / lid velocity

dt = h * cfl / Uinf; % time step

travel = 2; % times the disturbance travels entire length of computational domain

TT = travel * L / Uinf; % total time

ns = TT / dt; % number of time steps

l_square = 1; % length of square

Re = l_square * Uinf / nu; % Reynolds number

rho = 1.2047; % fluid density


%% initialize flowfield

u = zeros(Nx,Ny); % x-velocity

v = zeros(Nx,Ny); % y-velocity

p = zeros(Nx,Ny); % pressure

i = 2:Nx-1; % spatial interior nodes in x-axis

j = 2:Ny-1; % spatial interior nodes in y-axis

[X, Y] = meshgrid(0:h:L, 0:h:D); % spatial grid

maxNumCompThreads('automatic'); % select CPU cores


%% solve 2D Navier-Stokes equations

for nt = 1:ns

    pn = p;

    p(i, j) = ((pn(i+1, j) + pn(i-1, j)) * h^2 + (pn(i, j+1) + pn(i, j-1)) * h^2) ./ (2 * (h^2 + h^2)) ...

        - h^2 * h^2 / (2 * (h^2 + h^2)) * (rho * (1 / dt * ((u(i+1, j) - u(i-1, j)) / (2 * h) + (v(i, j+1) - v(i, j-1)) / (2 * h)))); % pressure poisson

    p(1, :) = p(2, :); % dp/dx = 0 at x = 0

    p(Nx, :) = p(Nx-1, :); % dp/dx = 0 at x = L

    p(:, 1) = p(:, 2); % dp/dy = 0 at y = 0

    p(:, Ny) = 0; % p = 0 at y = D 

    un = u;

    vn = v;

    u(i, j) = un(i, j) - un(i, j) * dt / (2 * h) .* (un(i+1, j) - un(i-1, j)) ...

        - vn(i, j) * dt / (2 * h) .* (un(i, j+1) - un(i, j-1)) - dt / (2 * rho * h) * (p(i+1, j) - p(i-1, j)) ...

        + nu * (dt / h^2 * (un(i+1, j) - 2 * un(i, j) + un(i-1, j)) + dt / h^2 * (un(i, j+1) - 2 * un(i, j) + un(i, j-1))); % x-momentum

    u(1, :) = 0; % u = 0 at x = 0

    u(Nx, :) = 0; % u = 0 at x = L

    u(:, 1) = 0; % u = 0 at y = 0

    u(:, Ny) = Uinf; % u = Uinf at y = D

    v(i, j) = vn(i, j) - un(i, j) * dt / (2 * h) .* (vn(i+1, j) - vn(i-1, j)) ...

        - vn(i, j) * dt / (2 * h) .* (vn(i, j+1) - vn(i, j-1)) - dt / (2  * rho * h) * (p(i, j+1) - p(i, j-1)) ...

        + nu * (dt / h^2 * (vn(i+1, j) - 2 * vn(i, j) + vn(i-1, j)) + dt / h^2 * (vn(i, j+1) - 2 * vn(i, j) + vn(i, j-1))); % y-momentum

    v(1, :) = 0; % v = 0 at x = 0

    v(Nx, :) = 0; % v = 0 at x = L

    v(:, 1) = 0; % v = 0 at y = 0

    v(:, Ny) = 0; % v = 0 at y = D

end


%% post-processing

velocity_magnitude = sqrt(u.^2 + v.^2); % velocity magnitude


% Visualize velocity vectors and pressure contours

hold on

contourf(X, Y, velocity_magnitude', 64, 'LineColor', 'none'); % contour plot

set(gca,'FontSize',40)

% skip = 20;

% quiver(X(1:skip:end, 1:skip:end), Y(1:skip:end, 1:skip:end),... % Velocity vectors

%     u1(1:skip:end, 1:skip:end)', v1(1:skip:end, 1:skip:end)', 1, 'k','LineWidth', 0.1);

hh = streamslice(X, Y, u', v', 5); % Streamlines

set(hh, 'Color', 'k','LineWidth', 0.1);

colorbar; % Add color bar

colormap hsv % Set color map

axis equal % Set true scale

xlim([0 L]); % Set axis limits

ylim([0 D]);

xticks([0 L]) % Set ticks

yticks([0 D]) % Set ticks

clim([0 0.95*max(velocity_magnitude(:))]) % Legend limits

title('Velocity [m/s]');

xlabel('x [m]');

ylabel('y [m]');


Cite as: Fahad Butt (2023). Lid-Driven Cavity (https://fluiddynamicscomputer.blogspot.com/2023/09/lid-driven-cavity-matlab-code.html), Blogger. Retrieved Month Date, Year

Saturday, 26 August 2023

Open - Source coded 3D Navier–Stokes equations in C++

     Here are 3D Navier–Stokes equations configured for lid-driven cavity flow. The syntax is C++. The results from this code are shown in Fig. 1. From the pressure-Poisson equation, I removed mixed derivative terms to improve solution stability. 😆

p[i][j][k] = ((p[i+1][j][k] + p[i-1][j][k]) * h * h + (p[i][j+1][k] + p[i][j-1][k]) * h * h + (p[i][j][k+1] + p[i][j][k-1]) * h * h) / (2 * (h * h + h * h + h * h)) - h * h * h * h * h * h / (2 * (h * h + h * h + h * h)) * (rho * (1 / dt * ((u(i+1, j, k) - u(i-1, j, k)) / (2 * h) + (v(i, j+1, k) - v(i, j-1, k)) / (2 * h) + (w(i, j, k+1) - w(i, j, k-1)) / (2 * h))));

p[0][j][k] = p[1][j][k];

p[num_i - 1][j][k] = p[num_i - 2][j][k];

p[i][0][k] = p[i][1][k];

p[i][num_j - 1][k] = p[i][num_j - 2][k];

p[i][j][0] = p[i][j][1];

p[i][j][num_k - 1] = 0.0;

u[i][j][k] = u[i][j][k] - u[i][j][k] * dt / (2 * h) * (u[i+1][j][k] - u[i-1][j][k]) - v[i][j][k] * dt / (2 * h) * (u[i][j+1][k] - u[i][j-1][k]) - w[i][j][k] * dt / (2 * h) * (u[i][j][k+1] - u[i][j][k-1]) - dt / (2 * rho * h) * (p[i+1][j][k] - p[i-1][j][k]) + nu * (dt / (h * h) * (u[i+1][j][k] - 2 * u[i][j][k] + u[i-1][j][k]) + dt / (h * h) * (u[i][j+1] [k] - 2 * u[i][j][k] + u[i][j-1][k]) + dt / (h * h) * (u[i][j][k+1] - 2 * u[i][j][k] + u[i][j][k-1]));

u[0][j][k] = 0.0;

u[num_i - 1][j][k] = 0.0;

u[i][0][k] = 0.0;

u[i][num_j - 1][k] = 0.0;

u[i][j][0] = 0.0;

u[i][j][num_k - 1] = -Uinf;

v[i][j][k] = v[i][j][k] - u[i][j][k] * dt / (2 * h) * (v[i+1][j][k] - v[i-1][j][k]) - v[i][j][k] * dt / (2 * h) * (v[i][j+1][k] - v[i][j-1][k]) - w[i][j][k] * dt / (2 * h) * (v[i][j][k+1] - v[i][j][k-1]) - dt / (2 * rho * h) * (p[i][j+1][k] - p[i][j-1][k]) + nu * (dt / (h * h) * (v[i+1][j][k] - 2 * v[i][j][k] + v[i-1][j][k]) + dt / (h * h) * (v[i][j+1][k] - 2 * v[i][j][k] + v[i][j-1][k]) + dt / (h * h) * (v[i][j][k+1] - 2 * v[i][j][k] + v[i][j][k-1]));

v[0][j][k] = 0.0;

v[num_i - 1][j][k] = 0.0;

v[i][0][k] = 0.0;

v[i][num_j - 1][k] = 0.0;

v[i][j][0] = 0.0;

v[i][j][num_k - 1] = 0.0;

w[i][j][k] = w[i][j][k] - u[i][j][k] * dt / (2 * h) * (w[i+1][j][k] - w[i-1][j][k]) - v[i][j][k] * dt / (2 * h) * (w[i][j+1][k] - w[i][j-1][k]) - w[i][j][k] * dt / (2 * h) * (w[i][j][k+1] - w[i][j][k-1]) - dt / (2 * rho * h) * (p[i][j][k+1] - p[i][j][k-1]) + nu * (dt / (h * h) * (w[i+1][j][k] - 2 * w[i][j][k] + w[i-1][j][k]) + dt / (h * h) * (w[i][j+1][k] - 2 * w[i][j][k] + w[i][j-1][k]) + dt / (h * h) * (w[i][j][k+1] - 2 * w[i][j][k] + w[i][j][k-1]));

w[0][j][k] = 0.0;

w[num_i - 1][j][k] = 0.0;

w[i][0][k] = 0.0;

w[i][num_j - 1][k] = 0.0;

w[i][j][0] = 0.0;

w[i][j][num_k - 1] = 0.0;


Fig. 1, Velocity and pressure iso-surfaces


     Of course constants need to be defined, such as grid spacing in space and time, density, kinematic viscosity. These equations have been validated, as you might have read and here already! Happy coding!

     If you want to hire me as your PhD student in the research projects related to turbo-machinery, aerodynamics, renewable energy, please reach out. Thank you very much for reading.

Monday, 14 August 2023

Heaving Flat Plate Computational Fluid Dynamics (CFD) Simulation (In-House CFD Code)

     The adventure 🏕 🚵 I started a while ago to make my own CFD 🌬 code / software 💻 for my digital CV and to make a shiny new turbulence mode (one-day perhaps) is going along nicely. This post is about a 2D 10% flat plate undergoing forced heaving motion. Heaving motion is achieved by Eqn. 1.


hy = Ho*sin(2*π*fh*t)                                              Eqn. 1

     w.r.t. Eqn. 1 reduced frequency is defined as (fh*Ho/U∞)), fh is the frequency of oscillations, while t is the instantaneous time. Ho is the heaving amplitude and U∞ is the free stream velocity. hy is the position of the flat plate. The animation is shown in Fig. 1.

     The Strouhal number is 0.228 and Reynolds number is at 500. As we can see, the in-house CFD code works very well for this complex CFD simulation. Validation of this work will never be completed 😆. As soon, I will move on to the next project without completing this one. Anyway, discretized Navier-Stokes equations are available here, in both C++ and MATLAB formats if you want to validate this non sense yourself! Good Luck!

The animation from in-house CFD simulation

     If you want to hire me as your PhD student in the research projects related to turbo-machinery, aerodynamics, renewable energy, please reach out. Thank you very much for reading.