Showing posts with label Laplace. Show all posts
Showing posts with label Laplace. Show all posts

Monday, 10 July 2023

CFD Basics: Code Vectorization

     This post is about comparing 2 codes to solve the 2D Laplace equation using finite difference method. A sample code mentioned under "Code 01" uses nested loops. We must, wherever possible avoid nested loops. The solution to the code is shown in Fig. 1. The second code uses vectorization instead of the nested loops. The vectorized version is mentioned under  "Code 02".

Code 01

clear
clc
close all
%% Parameters
Lx = 1; % Length of the domain in the x-direction
Ly = 1; % Length of the domain in the y-direction
Nx = 201; % Number of grid points in the x-direction
Ny = 201; % Number of grid points in the y-direction
dx = Lx / (Nx - 1); % Grid spacing in the x-direction
dy = Ly / (Ny - 1); % Grid spacing in the y-direction
%% Initialize temperature matrix
T = zeros(Nx, Ny);
T(:, 1) = 100;
T(:, Nx) = 0;
T(1, :) = 25;
T(Ny, :) = 50;
%% Gauss-Seidel iteration
max_iter = 50000; % Maximum number of iterations
tolerance = 1e-10; % Convergence tolerance
error = inf; % Initialize error
iter = 0; % Iteration counter
while error > tolerance && iter < max_iter
T_old = T;
% Solve Laplace equation using Gauss-Seidel iterations
for i = 2:Nx-1
for j = 2:Ny-1
T(i, j) = ((T(i+1, j) + T(i-1, j))*dy^2 + (T(i, j+1) + T(i, j-1))*dx^2) / (2*(dx^2 + dy^2));
end
end
% Compute error
error = max(abs(T(:) - T_old(:)));
% Increment iteration counter
iter = iter + 1;
end
%% plotting
[X, Y] = meshgrid(0:dx:Lx, 0:dy:Ly);
contourf(X, Y, T')
axis equal
colormap jet
colorbar
clim([0 100])
title('Temperature Distribution Non Vec')
xlabel('x')
ylabel('y')
zlabel('Temperature (T)')
colorbar

Code 02

clear
clc
close all
%% Parameters
Lx = 1; % Length of the domain in the x-direction
Ly = 1; % Length of the domain in the y-direction
Nx = 201; % Number of grid points in the x-direction
Ny = 201; % Number of grid points in the y-direction
dx = Lx / (Nx - 1); % Grid spacing in the x-direction
dy = Ly / (Ny - 1); % Grid spacing in the y-direction
i = 2:Nx-1;
j = 2:Ny-1;
%% Initialize temperature matrix
T = zeros(Nx, Ny);
T(:, 1) = 100;
T(:, Nx) = 0;
T(1, :) = 25;
T(Ny, :) = 50;
%% Gauss-Seidel iteration
max_iter = 50000; % Maximum number of iterations
tolerance = 1e-10; % Convergence tolerance
error = inf; % Initialize error
iter = 0; % Iteration counter
while error > tolerance && iter < max_iter
T_old = T;
% Solve Laplace equation using Gauss-Seidel iterations
T(i, j) = ((T(i+1, j) + T(i-1, j))*dy^2 + (T(i, j+1) + T(i, j-1))*dx^2) / (2*(dx^2 + dy^2));
% Compute error
error = max(abs(T(:) - T_old(:)));
% Increment iteration counter
iter = iter + 1;
end
%% plotting
[X, Y] = meshgrid(0:dx:Lx, 0:dy:Ly);
contourf(X, Y, T')
axis equal
colormap jet
colorbar
clim([0 100])
title('Temperature Distribution Vec')
xlabel('x')
ylabel('y')
zlabel('Temperature (T)')
colorbar

Result

Results say that vectorized code is ~1.5x faster than nested looped code for 200x200 matrix. Simulation results are now presented.

Fig. 1, Vectorized VS Nested Loops


Thank you for reading! I hope you learned something new! If you like this blog and want to hire me as your PhD student, please get in touch!

Sunday, 24 April 2022

1D Laplace's equation using Finite Difference Method

This post is about FDM for Laplace Equation with various boundary conditions.

MATLAB Code (1D, Dirichlet Boundary Conditions)

%% initialize the workspace, clear the command window


clear; clc


%% finite difference 1D laplace dirichlet boundary conditions %% d2u/dx2 = 0 %% u(o) = 10, u(L) = 4 %% Ax=b%%


N = 4 ; %number of grid points

L = 1; %length of domain

dx = L/(N-1); %element size


%% initialize variables %%


l = linspace(0,L,N); %independent

u=zeros(1,N); %dependent


%% boundary conditions %%


u(1)=10;

u(end)=4;


%% b vector %%


b=zeros(N-2,1);

b(1) = b(1) - u(1);

b(end) = b(end) - u(end);


%% A matrix


A = -2*eye(N-2,N-2);

for i=1:N-2

    if i<N-2

        A(i,i+1)=1;

    end

    if i>1

        A(i,i-1)=1;

    end

end


%% solve for unknowns %%


x = A\b;


%% fill the u vector with unknowns %%


u(2:end-1) = x;


%% plot the results %%


hold on; grid on; box on, grid minor

set(gca,'FontSize',40)

set(gca, 'FontName', 'Times New Roman')

ylabel('u','FontSize',44)

xlabel('l','FontSize',44)


plot(l,u,'-o','color',[0 0 0],'LineWidth',2,'MarkerSize',20)


MATLAB Code (1D, Mixed Boundary Conditions)

%% initialize the workspace, clear the command window

clear; clc

%% finite difference 1D laplace mixed boundary conditions %% d2u/dx2 = 0 %% u(o) = 10, du/dx(L) = 4 %% Ax=b%%

N = 5; %number of grid points
L = 1; %length of domain
dx = L/(N-1); %element size
a = 4;
%% initialize variables %%

l = linspace(0,L,N); %independent
u=zeros(1,N); %dependent

%% dirichlet boundary condition %%

u(1) = 10;

%% b vector %%

b=zeros(N-1,1);
b(1) = b(1) - u(1);
b(end) = b(end) + dx*a; %neumann boundary condition added to b vector

%% A matrix

A = -2*eye(N-1,N-1);
for i=1:N-1
    if i<N-1
        A(i,i+1)=1;
    end
    if i>1
        A(i,i-1)=1;
    end
end
A(N-1,N-1) = -1; %neumann boundary condition added to A matrix
%% solve for unknowns %%

x = A\b;

% fill the u vector with unknowns %%

u(2:end) = x;

%% plot the results %%

hold on; grid on; box on, grid minor
set(gca,'FontSize',40)
set(gca, 'FontName', 'Times New Roman')
ylabel('u','FontSize',44)
xlabel('l','FontSize',44)

plot(l,u','-o','color',[0 0 0],'LineWidth',2,'MarkerSize',20)